Monday 9–11 and Wednesday 9–10 in Shenkar 204

The grade will be based on exercises (20%) and the final exam (80%). See Moodle for exercises, solutions, and (maybe) more.

- Scattering of wave packets — justification of the time-independent scattering theory.
- Time-independent formalism:
integral equation,
*T*matrix, Lippmann–Schwinger equation, optical theorem,*S*matrix and unitarity. - First Born approximation, limit of its validity.
Diagonalization of
*S*in angular-momentum basis — partial waves. Phase shifts and the radial Schrödinger equation. Integral equation for phase shifts. - Low energy behavior of phase shifts. Generalization to inelastic scattering. Spin-dependent scattering.
- Isospin amplitudes. Pion–proton data. Elastic resonances.
- Wigner–Weisskopf theory.
Application to barrier tunneling.

- Coupled channels and thresholds. Feshbach resonance.
- Parity and time reversal, applications to scattering. Density matrices and spin.
- Dirac equation: non-relativistic limit, Lorentz invariance, parity.
- Zitterbewegung, Klein
paradox. Dirac theory of the hydrogen atom.

- Second quantization of Dirac equation, hole theory.
- Quantum electrodynamics: Interaction Hamiltonian, Dyson expansion. Graphical representation of terms in Dyson expansion.
- Calculation of cross section from
*S*matrix element. Phase space. Summarize Feynman rules.

- General texts:
- R. H. Landau, Quantum Mechanics II
- K. Gottfried, Quantum Mechanics
- A. Messiah, Quantum Mechanics
- E. Merzbacher, Quantum Mechanics
- B. R. Holstein, Topics in Advanced Quantum Mechanics
- G. Baym, Lectures on Quantum Mechanics
- L. I. Schiff, Quantum Mechanics

- Scattering theory:

- J. R. Taylor, Scattering Theory
- M. L. Goldberger and K. M. Watson, Collision Theory
- A. I. Baz', Ya. B. Zel'dovich, and A. M. Perelomov, Scattering, Reactions, and Decay in Nonrelativistic Quantum Mechanics
- C. J. Joachain, Quantum Collision Theory
- J. M. Eisenberg and D. S. Koltun, Theory of Meson Interaction with Nuclei

- Dirac equation:
- J. J. Sakurai, Advanced Quantum Mechanics
- J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics
- H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron
Atoms

- Quantum electrodynamics:
- F. Mandl, Introduction to Quantum Field Theory
- M. Kaku, Quantum Field Theory
- J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields
- D. S. Koltun and J. Eisenberg, Quantum Mechanics of Many Degrees of Freedom
- S. S. Schweber, Introduction to Relativistic Quantum Field Theory

- Other:
- J. J. Sakurai, Invariance Principles and Elementary Particles
- B. H. Bransden and R. G. Moorhouse, The Pion–Nucleon System
- W. Heitler, The Quantum Theory of Radiation