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Abstract

I review some of the history of the flux-tube model, concentrating on work
done by the Los Alamos–Tel Aviv collaboration on particle creation and back-
reaction in uniform fields and in the central rapidity region. I discuss the
incorporation of more realistic geometry and structure of the flux tube via
application of the dual superconductor model of confinement.

During the decade of my collaboration with Judah, his main area of interest
was the quark–gluon plasma and the efforts to create it in relativistic heavy-
ion collisions. He was especially drawn to the problem of particle creation
in the earliest stages of a collision, and the process by which these particles
might reach thermodynamic equilibrium. For a model of particle creation, we
focused on the flux-tube model. It presented us with the practical question of
connecting fundamental quantum field theory with phenomenology, and thus
with the theoretical challenge of connecting quantum field theory with kinetic
theory and hydrodynamics.2

1 Kinetic theory of particle creation

After years of effort and anticipation, the Relativistic Heavy Ion Collider (RHIC)
at Brookhaven will soon begin producing collisions of gold nuclei in colliding
beams, at an energy of 100 GeV per nucleon in each beam. Theoretical con-
siderations, as well as data from the successful heavy-ion program at CERN’s
SPS, lead us to expect that in a central Au–Au collision the incoming baryons

1Invited talk at Nuclear Matter, Hot and Cold: a Symposium in Memory of Judah M.
Eisenberg, Tel Aviv, Israel, April 14–16, 1999. Work supported by the Israel Science Foun-
dation under Grant No. 255/96-1 and by the Basic Research Fund of Tel Aviv University.

2We enjoyed a long-term collaboration in this area with Fred Cooper and Emil Mottola of
Los Alamos and with Yuval Kluger, who wrote his Ph. D. thesis on the subject at Tel Aviv
and then moved to Los Alamos.
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will pass through each other with minimal deflection. The net outgoing baryon
number will thus be concentrated within a couple of units of rapidity of the
beam rapidities, leaving a large central region to be filled by a baryon-free
plasma. Energy deposition in the central region will take place mainly via soft
mechanisms, although minijet production will play a significant role.

A QCD-inspired model for soft production in the central region begins [1]
with the exchange of soft gluons between the two nuclei as they pass through
each other. This leaves them charged with color, sources of color electric flux.
The flux fills a tube connecting the receding nuclei, which thus form a “color
capacitor” if the field is coherent across the tube, or a “color rope” if it is not.
The electric field strength in either case is proportional to the square root of
the number of gluon exchanges per unit area, and thus E ∼ A1/3, as a result
of a random walk in color space.

An electric field will pop pairs of charged particles (in this case, colored
particles) out of the vacuum, especially if they are light on the scale of the
available field energy density. Casher, Neuberger, and Nussinov [2] derived via
WKB the rate for particle creation per unit volume as a function of transverse
momentum,

dN

dt dV d2p⊥
= eE log

[

1 + exp

(

−π(m
2 + p2⊥)

eE

)]

. (1)

(Integrating (1) over p⊥ gives the famed Schwinger formula [3].)
If the flux tube is narrow to begin with, as in the case of e+e− annihila-

tion into quarks or of pp scattering, the quarks produced via (1) will break
the tube and begin an inside–outside cascade. For nucleus–nucleus collisions,
however, the geometry more closely resembles that of the idealized problem of
a homogeneous electric field created by infinite, parallel capacitor plates. Then
the created particles form a uniform current that screens the field gradually
according to (Abelian) Maxwell’s equations,

dE

dt
= −j . (2)

This is called back-reaction. A straightforward approach to the particle dy-
namics is given by kinetic theory, where the pair creation rate (1) appears as a
source term for the Vlasov equation [4, 5],

∂f

∂t
+ eE

∂f

∂pz
= eE log

[

1 + exp

(

−π(m
2 + p2⊥)

eE

)]

δ(pz) . (3)

(The particle density f feeds back into the Maxwell equation (2) through the
current.) This gives a beautiful description of matter creation and subsequent
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plasma oscillations. The drawback of this approach, of course, is that the use
of the classical Vlasov formalism lacks fundamental justification.

2 Enter quantum field theory

Quantum field theory allows a first-principles approach to the problem [6, 7].
One begins by taking the number of flavors Nf to infinity in order to justify a
classical, mean-field approximation for E. If we begin with a scalar field in one
dimension, the ingredients of the theory are then the Klein–Gordon equation
for the matter field,

[(∂µ + ieAµ)(∂µ + ieAµ) +m2]Φ(x) = 0 , (4)

and the semiclassical Maxwell equation,

∂µF
µν = 〈0|jν |0〉 . (5)

A Fourier expansion of Φ,

Φ(x, t) =

∫

dk

2π

[

fk(t)ak + f∗k (t)b
†
−k

]

eikx , (6)

inserted into (4), gives evolution equations for the Fourier amplitudes fk,

d2fk(t)

dt2
+ ω2k(t)fk(t) = 0 , (7)

where
ωk(t)

2 ≡ [k − eA(t)]2 +m2 . (8)

The canonical commutation relations for Φ imply that fk can be written as

fk(t) =
1

√

2Ωk(t)
e−i
∫

t

Ωk(t
′)dt′ . (9)

Inserting this into (7) gives equations for the effective frequencies Ωk(t),

Ω2k(t) = −
Ω̈k

2Ωk
+

3

4

(

Ω̇k

Ωk

)2

+ ω2k(t) . (10)

We can write the current j in terms of the amplitudes fk, and (5) becomes the
subtracted, renormalized equation

Ä = e

∫

dk

2π
(k − eA)

[

1

Ωk(t)
− 1

ωk(t)

]

. (11)
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Equations (10) and (11) can be integrated numerically.
We applied this formalism to the creation of bosons [7] and fermions [8] in

one and three [9] dimensions. For illustration, I show in fig. 1 the time evolu-
tion (in scaled variables) of a system of bosons in three dimensions. Particles
created at early times are accelerated into plasma oscillations, with continued
particle creation whenever the field is non-zero. A comparison to the results of
kinetic theory [a slight modification of (3): dashed curves] shows that the lat-
ter approximates the field-theoretic solution well. Space limitations prevent me
from showing the beautiful results of comparing the phase space distributions
of produced particles in the two approaches.

Figure 1: Plasma oscillations of bosons in three dimensions
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3 Extensions

The idealized problem of infinite, static capacitor plates was of course only a
first step in development of the flux tube model. With an eye towards nucleus–
nucleus collisions, we extended the analysis [10] to the problem of capacitor
plates separating at the speed of light, z = ±ct. As is natural in the context
of the central rapidity region [11], we assumed that the initial conditions are
invariant under longitudinal boosts so that the time development depnds only
on the invariant, comoving time τ =

√
t2 − z2. The phase-space distribution

of the produced particles now gives the rapidity distribution dN/dy, and anal-
ysis of the energy-momentum tensor gives the energy density and equivalent
temperature as functions of τ (though there is as yet no mechanism for equi-
libration). As it turns out, the results are again well approximated by kinetic
theory.

The geometry to this point is still that of an idealized system of infinite
transverse extent. Upon solving the problem in a cylinder of finite radius (a
computationally formidable problem due to nonlinear mode mixing), Judah
found [12] that the agreement between field theory and kinetic theory is at best
qualitative.

As mentioned, the semiclassical approximation presented above finds its jus-
tification in the limit of large Nf . The next order in 1/Nf introduces particle–
particle collisions and thus a mechanism for relaxation to thermal equilibrium
[13]. Unfortunately, the resulting integro-differential equations are (so far) com-
putationally unmanageable. Kluger, Mottola, and Eisenberg [14] later eschewed
this approach and showed, in what was to be Judah’s last paper, that equili-
bration can arise even in the lowest-order mean field theory shown above if one
allows for dephasing [15] of the highest-frequency quantum oscillations. The
connection between reversible quantum mechanics and irreversible kinetic the-
ory has long been an area of mystery and of hard work. In this last paper,
a Vlasov equation non-local in time is actually derived for the pair-creation
problem.3

4 The flux tube of the dual superconductor

Judah, as noted, applied the field-theoretic formalism to particle production in
a cylindrical flux tube of finite, fixed radius. The QCD flux tube, however, is a
dynamical object, governed by field equations. ’t Hooft and Mandelstam noted

3The paper is a mathematical tour de force of Airy functions, uniform asymptotic expan-
sions, etc. Anyone who knew Judah’s great love for mathematical physics of the Morse &
Feshbach variety will recognize Judah walking in its pages.
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long ago that flux tubes arise naturally in superconductors via the Meissner
effect; just as magnetic monopoles would be confined by a magnetic flux tube
in a superconductor, quarks with their electric color charge would be confined
by an electric flux tube if the QCD vacuum has the structure of a dual super-
conductor. Melissa Lampert and I have taken the first step of studying the
dynamics of classical charges moving in an electric flux tube and the reaction
of the flux tube in this model [16].

To specify the dual superconductor model, we begin with Maxwell’s equa-
tions coupled to both magnetic and electric currents,

∂µF
µν = jνe (12)

∂µF̃
µν = jνg . (13)

Eq. (13) is no longer just a Bianchi identity; thus a vector potential can be
introduced only if a new term is added to take care of the magnetic current,

Fµν = ∂µAν − ∂νAµ + εµνλσGλσ , (14)

Gµν = −nµ(n · ∂)−1jνg . (15)

This vector potential can be coupled to electric charges as usual; in order to
introduce magnetic charges, one introduces a dual potential [17] via

F̃µν = ∂µBν − ∂νBµ + εµνλσMλσ , (16)

Mµν = −nµ(n · ∂)−1jνe . (17)

Now we can write a model for the monopoles, for which the simplest is an
Abelian Higgs theory [18, 19],

DB
µD

µBψ + λ(|ψ|2 − v2)ψ = 0 , (18)

where
DB
µ ≡ ∂µ − igBµ . (19)

This theory should produce the desired magnetic condensate to confine electric
charge. The magnetic current appearing in (13) is

jµg = 2g Imψ∗DµBψ . (20)

For the electric charges, we take simple two-fluid MHD (see [16] for details).
The parameters of the theory may be adjusted to put the superconductor

into the Type I or the Type II regime; the density of the charged fluid will make
the plasma frequency ωp larger or smaller than the mass mV of the gauge boson
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Figure 2: Plasma oscillations in the Type I dual superconductor with ωp < mV :
the electric field on the axis of the flux tube.

in this Higgs theory. I show in fig. 2 plasma oscillations in the flux tube for a
Type I superconductor with ωp < mV . The oscillations are made nonlinear by
the reaction of the flux tube, which tries to close up when the field is weak.

This is a first step towards the inclusion of the dynamics of the flux tube in
a model of particle creation. The latter might be included, as discussed above,
as a kinetic theory based on a Vlasov equation or via a full field-theoretic
treatment. As argued in [16], however, the simplest Higgs theory (18) doesn’t
contain enough dynamical confinement physics to produce good phenomenology.
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