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Abstract:-We present a summary of the present status of efforts to solve the problem
in which pairs are produced in a strong electric field, are accelerated by it, and then react
back on it through the counter-field produced by their current. This picture has been used
by BiaÃlas and Czyż and others as a model for effects that may possibly arise in the study
of the quark-gluon plasma. We here give a didactic review of recent developments in this
back-reaction problem. We first present a simple version of the theory of pair tunneling from
a fixed electric field, and then sketch how this has been applied to the quark-gluon plasma.
Then we turn to a field formulation of the problem for charged bosons, which leads to the
need to carry out a renormalization program, outlined again in simple terms. Numerical
results for this program are presented for one spatial dimension, the corresponding physical
behavior of the system is discussed, and the implications for three spatial dimensions are
considered. We exhibit a phenomenological transport equation embodying physics that is
essentially identical to that of the field formulation, thus helping to tie the model of BiaÃlas
and Czyż for the quark-gluon plasma to a field-theory formulation. Last, we note the status
of extensions to (i) the problem with three space dimensions; (ii) the fermion case; (iii) the
formulation in terms of boost-invariant variables (as desirable for the quark-gluon plasma);
and (iv) transport equations derived in a fundamental and consistent fashion.
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1. The context of this study

In March 1967 one of us (J.M.E.) first met WiesÃlaw Czyż while riding the daily bus from

Tel Aviv to Rehovot, where we were both attending an international conference, and found

unusual personal and scientific rapport with him. A few months later, in the aftermath of

the June 1967 war, scientific travel between Poland and Israel became impossible, although

we continued to meet periodically elsewhere within the scientific community. Thus it was

natural, when free exchange again became possible, to invite WiesÃlaw for a visit to Tel Aviv

in 1987. His main scientific interest at that moment was his work with Andrzej BiaÃlas on

oscillations in the quark-gluon plasma as described in a transport-equation formalism1. The

work we present here is a direct outgrowth of that visit. A brief initial report on it has

been published2, and further work will be appearing soon3. The emphasis in this paper is

on a didactic summary of the current status of the back-reaction problem. Many technical

details are suppressed ruthlessly in the hope of setting forth the main physical issues more

clearly. Thus, for purposes going beyond general education, at least refs. 2 through 4 should

be consulted.

Figure 1 provides a very simplistic depiction of a possible scenario for the first stage

of the production of a quark-gluon plasma at ultra-relativistic energies. Two highly con-

tracted nuclei are assumed to have collided, generated color charges on each other, and

then passed through each other. In their wake they have left a chromoelectric field pro-

duced by the color charges on the receding nuclei. In our treatment this chromoelectric

field is taken in a radically simplified view: We treat it as an Abelian—and therefore an

ordinary electric—field; we further take it to be a classical field4, and regard it as filling all

space homogeneously. These are, of course, highly unrealistic assumptions insofar as the

quark-gluon plasma application is concerned, but, as we shall see, even with these grotesque

simplifications the back-reaction problem remains remarkably recalcitrant. Thus we exploit

all of them in order to make progress with back-reaction, and hope to restore a more realis-

tic framework after that has been done. Out of the (chromo)electric field there now tunnel

pairs of partons, quarks and gluons of opposite “charge,” that are eventually to comprise

the plasma.

The tunneling mechanism in question has been extremely well known for over 60 years

now5, and an exact solution6 for the pair creation rate in the presence of a fixed, external

electric field has been available for some 40 years. In simple terms7, what is happening

in the tunneling process is illustrated in fig. 2. The pair we are considering is initially

latent in the Dirac sea. We imagine a fictitious potential that binds this latent pair at the
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combined rest-mass energy 2mc2. The electric field provides a further potential −eEx, and

the overall potential then allows the pair to tunnel through to the outside. The point at

which they emerge is x = 2m/eE, implying, for small fields, a long tunneling distance. A

rough estimate of the rate of pair production is then given by

rate ∼ exp[−

∫

|p| dx] ∼ exp[−2

∫ 2m/eE

0

1

2
(2m · 2m)1/2 dx] ∼ exp[−

4m2

eE
]→ exp[−

πm2

eE
],

(1)

where the last expression is that to emerge from a more precise treatment. As is to be

expected, the tunneling process is quantal by its nature, and no perturbative expansion

about E = 0 is possible for it.

Now the application1,8,9 of this pair tunneling rate to the picture for quark-gluon

plasma production of fig. 1 has been made through the use of a Boltzmann equation in

which the pair rate serves as a source term on the right-hand side,

∂f

∂t
+

~p

(~p2 +m2)1/2
·
∂f

∂~x
+ e ~E(t) ·

∂f

∂~p
= pair rate = · · · exp[−

πm2

eE(t)
], (2)

where, of course, f(~x, ~p, t) is the density of particles at position ~x, with momentum ~p and

at time t. We have again indicated only very loosely the structure of the equation; more

precise forms for our present context will eventually be given below. Further, the applica-

tions to the quark-gluon plasma are generally made in terms of boost-invariant variables

and coordinates. We shall return briefly to this point towards the end of this paper, but

otherwise we shall here work with conventional space and time variables in order to study

the back-reaction issue. Indeed, the question of a correct description of back-reaction de-

serves an acceptable answer even in ordinary quantum electrodynamics, without the further

motivation provided by thoughts of eventual application to the quark-gluon plasma. (We

note that a very closely analogous back-reaction problem arose years ago in inflationary

cosmology4,10; there the time-dependent metric plays the role of the time-dependent elec-

tric field here.)

In allowing the electric field in eq. (2) to be time-dependent, we have anticipated

the inevitable appearance of back-reaction: Once the charged pairs make their appearance,

they will be accelerated by the electric field, producing a current, which in turn produces

an electric field. This field will oppose the direction of the original field, and eventually

field and plasma oscillations will be set up; indeed it was just those oscillations that were of

interest to BiaÃlas and Czyż1. This effect enters our theoretical description through a simple

application of Maxwell’s laws for this case,

~̇E(t) = −~j(t) = −e

∫

d~p
~p

(~p2 +m2)1/2
f(~x, ~p, t), (3)
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where, for the case of a homogeneous system filling all of space, only a constant magnetic

field can arise, which we ignore. The two equations (2) and (3) now form a coupled set

which must be solved to incorporate back-reaction and exhibit oscillatory behavior.

It is clear, however, that there is an inconsistency built into the construction of this set

of coupled equations: The expression for the rate of pair production used on the right-hand

side of eq. (2) is derived5−7 for the case of a field fixed (by an external agent) in time,

while back-reaction necessarily involves a changing field. Furthermore, one might easily

suppose that pairs produced directly from the time variation of the field will be generated

at a faster rate than those that emerge from tunneling11. In fact, eq. (2) has not really

been “derived” from any basic field equations through the use of a Wigner representation,

say, but instead has been put together on the grounds of a healthy physical intuition for the

problem. This immediately raises the two questions, (i) How would back-reaction emerge

in a description of this same physical system based on field theory, and (ii) can one derive a

transport equation resembling eq. (2) from the field-theory formulation? In this work, we

provide an answer for the first of these questions, and are able to find a transport equation

very much along the lines of eq. (2) above, whose solutions bear a striking resemblance—at

the quantitative level—to those of the field theory. The question of a direct derivation of

the transport equations from the field equations is the subject of ongoing study.

2. Formulation of back-reaction in field theory

In line with our didactic purpose here, we shall continue to formulate the back-reaction

problem in its simplest form; a far more complete discussion is given in ref. 4. We take a

system of charged bosons of mass m satisfying a Klein-Gordon equation

−(∂ − ieA)µ(∂ − ieA)µφ+m2φ = 0, (4)

where for the homogeneous electric field filling all space we take a vector potential (in a

particular gauge)

Aµ = (0; ~A(t)), (5)

which satisfies the Maxwell equation

~̈A(t) = ~j = −ie[φ†~∇φ− (~∇φ†)φ]− 2e2 ~Aφ†φ. (6)

The form of the boson field after second quantization is

φ(~x, t) =

∫

d~k

(2π)3
[

f~k(t) a~k exp[i~k · ~x] + f∗
−~k

(t) b†~k
exp[−i~k · ~x]

]

, (7)
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where a~k and b†
−~k

are the particle annihilation and antiparticle creation operators, respec-

tively. The forms f~k are the mode amplitudes for bosons with momentum ~k, which, upon

substituting eq. (7) into eq. (4), are seen to satisfy

f̈~k(t) + ω2
~k
(t)f~k(t) = 0, (8)

where

ω2
~k
(t) = (~k − e ~A(t))2 +m2, (9)

just as one would anticipate. The boson commutation relations imply a constraint on the

mode amplitudes,

[a~k, a
†
~k′
] = [b~k, b

†
~k′
] = (2π)3 δ(~k − ~k′)⇒ f~kḟ

∗
~k
− f∗~k ḟ~k = i. (10)

Last, using eq. (7) the Maxwell equation becomes

~̈A(t) = 〈~j(t)〉 = e

∫

d~k

(2π)3
(~k − e ~A(t)) 2|f~k(t)|

2, (11)

where the brackets on ~j(t) are necessary in order to yield a classical electric field, according

to the restriction we have chosen. They will imply, for our present purposes, an expectation

value in the initial vacuum, although more general formulations are, of course, possible4.

There immediately arises the question as to whether this integral for the current converges.

3. Renormalization

As we shall in a moment see, the convergence of the integral in eq. (11) is by no means

guaranteed, and a renormalization procedure is required for the back-reaction problem4.

It is a rather intricate case since the dynamics of the system are intrinsically interwoven

with the renormalization. Put another way, there is no simple answer to the question of

the convergence of the integral for the current, since that convergence is governed by the

behavior of f~k(t) at large ~k, which in turn is to be known only after the solution of the

coupled equations describing the system dynamics. And, of course, no such solution is

possible so long as there is no finite result for the current. The general considerations

pertinent to the problem of renormalizing—an issue having a long history—are presented

very lucidly in ref. 4, where previous literature on the subject is also noted. The only viable

approach appears to be to study the high-k behavior of f~k(t) using a WKBJ-like ansatz,

which, as one might expect, rather readily lends itself to the investigation of the high-energy

limit, and an assumption of adiabaticity. We therefore make the general ansatz

f~k(t) =
1

[2Ω~k(t)]
1/2

exp[−i

∫ t

Ω~k(t
′) dt′], (12)
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where it is easily seen that, as for the usual WKBJ treatment in quantum mechanics, Ω~k(t)

satisfies

Ω2
~k
(t) +

Ω̈~k
2Ω~k

−
3Ω̇2

~k

4Ω2
~k

= ω2
~k
(t). (13)

The Maxwell equation (11) then becomes

~̈A(t) = 〈~j(t)〉 = e

∫

d~k

(2π)3
(~k − e ~A(t))

1

Ω~k(t)
. (14)

In order to proceed with an investigation of the behavior of f~k(t) at high ~k, we have

no choice but to suppose that Ω~k(t) varies adiabatically in this limit. This is in some sense

consistent with one’s expectations for a renormalization program since a violent variation

in the time dependence of the physical quantities at large momenta would certainly appear

to rule out any hope of renormalizing them meaningfully. In the present case, we shall,

at the end, find a kind of a posteriori justification for this procedure in that the physics

that emerges from it is consistent with a quite different phenomenological formulation of

the problem. Assuming adiabaticity, we replace the time derivatives of Ω~k(t) with those

of ω~k(t), and suppose ω̇~k(t)/ω
2
~k
(t) ¿ 1, ω̈~k(t)/ω

3
~k
(t) ¿ 1; we then expand in these small

ratios. For the quantity entering in the Maxwell equation, we have

1

Ω~k(t)
=

1

ω~k(t)
[1−

3ω̇2
~k

8ω4
~k

+
ω̈~k
4ω3

~k

+ · · ·]. (15)

To the order in 1/k that we need, terms in the first and second time derivatives suffice, and,

again to the necessary order, these derivatives are

ω̇~k =
−e ~̇A · (~k − e ~A)

ω~k
and ω̈~k =

−e ~̈A · (~k − e ~A)

ω~k
+O(1/k). (16)

It is then clear from the antisymmetry of the integral in (14) in the variable (k−eA) that the

first term on the right-hand side of eq. (15)—the “1” in the brace—makes no contribution.

The second term gives a finite integral. But the third term diverges logarithmically. We

eliminate this divergence by adding and subtracting the logarithmically divergent integral

e

∫

d~k

(2π)3
k2
3 e

~̈A(t)

4ω5
~k
(0)

= e

∫

d~k

(2π)3
k2e ~̈A(t)

12ω5
~k
(0)

.

This added integral can then be regrouped with that of eq. (14) to produce a finite re-

sult, and the subtraction of the identical integral is absorbed into the definition of the

renormalized charge, e2R = Ze2, where the infinite renormalization constant is

Z =

[

1 + e2
∫

d~k

(2π)3
k2

12ω5
~k
(0)

]−1

.
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The electromagnetic field is correspondingly renormalized by ~AR = ~A/Z1/2, so that the

combination eA which appears throughout is unchanged, and we therefore need not bother

to label all the quantities e and A with a subscript R. The renormalized Maxwell equation

now reads

~̈A(t) = e

∫

d~k

(2π)3
[
~k − e ~A(t)

Ω~k(t)
+
k2e ~̈A(t)

12ω5
~k
(0)

], (17)

where it is to be understood that all the electromagnetic quantities appearing refer to their

renormalized values, and the integral on the right-hand side is finite.

Still a problem remains, however: There is no guarantee that, for a given choice

of initial values, the resulting solutions for f~k(t), or, equivalently, for Ω~k(t), will remain

adiabatic at all future times, a property upon which the entire renormalization scheme

rests through the use of eq. (15). Cooper and Mottola4 therefore proposed to require that

at all times these quantities fulfill

1

Ω~k(t)
=

1

ω~k(t)
−
e(~k − e ~A) · ~̈A

4ω5
~k
(t)

+ r(~k, t), (18)

where r(~k, t) must fall off faster than 1/k4, thus guaranteeing adiabaticity at all times.

Then

~̈A(t) = e

∫

d~k

(2π)3
(~k − e ~A(t)) r(~k, t), (19)

where the factor preceding the integral on the right-hand side results from explicitly carrying

out the integrals that multiply ~̈A. This integral is, of course, finite, and the coupled equations

(13) and (19) can now, in principle, be solved, at each stage in time imposing eq. (18). In

fact, it would appear, rather peculiarly, that eq. (19) is no longer required except at t = 0,

since eq. (18) will allow the determination of ~̈A at each time by isolating—as we must

do anyway to carry through this procedure—the part of 1/Ω~k(t) that falls off with 1/k4 at

large momentum. It is as if the main use of the Maxwell equation were to establish the need

for renormalization, after which that stiff requirement alone suffices to generate solutions.

In reality it emerges that this strange situation is not the one encountered physically.
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4. Results for the case of one spatial dimension

Both because of the intricacy of the renormalization procedure and the numerical

difficulties of the full three-dimensional problem, it has proved important first to study2

the back-reaction problem in one spatial dimension (1 + 1) in order to gain some insight in

preparation for attacking the problem with three spatial dimensions (3 + 1). In this case,

insofar as the adiabatic assumption for Ωk(t) is valid, no renormalization is needed. Let us

start by looking at the integrand in eq. (14) as a function of momentum k after some time

has passed in this 1+1 case. The result is shown in fig. 3, where we see on the left-hand side

a highly oscillatory result for it. At the technical numerical level this oscillatory behavior

means that a very fine grid in k is required from the start of the problem at t = 0. For

this reason reliable numerical results are tedious to come by. Furthermore, it rules out a

renormalization program based on isolating terms that decay as a reciprocal power in k,

which becomes impossible in the face of the oscillations. We return to this point briefly

below.

Figure 4 shows Ẽ(t), and its derivative j̃(t), as functions of time for an initial value

Ẽ(0) = 4 and e2/m2 = 0.1. The quantities are scaled for 1+1 such that they become dimen-

sionless, i.e., Ẽ ≡ eE/m2, j̃ ≡ ej/m3, and τ ≡ mt, and adiabatic initial values have been

taken for Ωk(0) = ωk(0) and Ω̇k(0) = ω̇k(0). All these quantities show plasma oscillations

with slightly increasing frequency as time goes by, corresponding to the additional produc-

tion of pairs in the electric field, mainly at its peak values. The current j(t) shows a quite

flat plateau where its first (and, in some cases, second) oscillatory peak is expected. This

occurs because the initial number of pairs produced is not very great, and the subsequent

acceleration of the particles brings them to the speed of light, leading to a saturation of

the current. This is in fact a rather useful property since it gives us a way to measure the

number of particles present at the early times: The current is given by j = 2nev, where

n is the density of particles (or antiparticles) of charge e, and ±v is their velocity. At the

plateau |v| = 1, and n may be read off from the plateau height. Since the precise definition

of particle number is unclear in a field formulation so long as the electric field is nonzero,

this gives us a physical way to extract the operative number. At later times we may use

the connection between the relativistic plasma frequency and the particle number for this

purpose.
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5. A classical Boltzmann model yielding equivalent results

All of these physical points may be sharpened considerably by considering a Boltzmann

model2 close to that of eqs. (2) and (3), but now with benefit of the field solutions of eqs.

(13) and (14) to test it. The model in question has the transport equation

∂f

∂t
+ eE(t)

∂f

∂p
=
|eE(t)|

2π
log

[

1 + exp[−
πm2

|eE(t)|
]
]

δ(p), (20)

where the right-hand side is the pair-production rate of the tunneling mechanism in one

spatial dimension, with a distribution in momentum space suggested by microscopic argu-

ments on pair tunneling (see especially the first paper noted in ref. 7). This can be inserted

into the Maxwell equation (3), and the resulting single equation in A(t) and its derivatives

is easily solved. A comparison of this solution, shown by the dashed line, with that obtained

from the field equations is given in fig. 4, and is seen to reproduce the initial oscillatory and

plateau behavior quite remarkably. Later, the oscillations drift out of phase, presumably

because the classical Boltzmann equation has no mechanism for direct production of pairs

through time variations in E(t), as is allowed in the field case. The agreement is made even

more striking—shown in fig. 4 by the dot-dash line—if an enhancement factor for induced

boson emission (2f + 1) is inserted to multiply the right-hand side of eq. (20). (The factor

of two appears here because each member of the pair is enhanced.) Of course, the highly

oscillatory numerical results for 1/V dN/dk bear no resemblance to the smooth distribution

f(p, t), but if we smooth the former, say by grouping every 100 momentum points into

one bin, we obtain the curve shown in fig. 3 on the right-hand side, which again shows a

remarkable resemblance to the result for f(p, t) given on the right-hand side of fig. 3 by the

dashed line. Thus for purposes of physical interpretation the Boltzmann problem can in a

major degree replace the field formulation, very much along the lines of the applications1,8,9

to the quark-gluon plasma.

6. Summary and outlook

We believe that the present calculation provides, for the first time, reliable numerical

results for the formulation of the back-reaction problem as one of coupled fields in 1 + 1

dimensions. It allows the elucidation of the main physical effects of plateaux in the current

at early times, and plasma oscillations throughout. It also implies that a modification of

the renormalization scheme based on eq. (19) is required. Last it provides a mapping

to an equivalent classical and phenomenological Boltzmann formulation for the problem,

which may be of great value for considering the physics of systems where back-reaction is
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important, but quantum details may not be essential.

Much has yet to be done3 before one can feel satisfied with our mastery of even this

simplified problem involving a homogeneous system filling all of space:

1. Progress has been made in handling the 3 + 1 problem of three spatial dimensions,

which, of course, requires renormalization. A consistency loop, based on eq. (19) and

guaranteeing that eq. (18) is indeed satisfied for all t, has been inserted into the coupled

equations. The already tedious numerical work of the 1 + 1 problem becomes, however,

even more difficult in this case. Results are shown in fig. 5 for Ẽ(0) = 7 and e2/m2 = 4.

2. The same field methods may be applied to the fermion case, and a similar Boltz-

mann equation may be constructed, this time with fermion suppression in place of boson

enhancement. The agreement between the two methods is this time somewhat less striking,

though still present at a qualitative level.

3. The formulation of the problem in terms of boost-invariant variables is required for

applications to the quark-gluon plasma1,8,9, and this has now been carried out3.

4. The perplexing question remains as to how to derive a transport equation directly

from the field formulation by use of a Wigner representation. In fact this issue becomes

rather more mysterious in the light of our results here, since it is well known12,13 that

transport equations derived in that fashion—and exhibiting pair production—are generally

homogeneous in the transport function, which makes the appearance of a source term on

the right-hand side of eq. (20) quite surprising.
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Figure captions:-

1. Schematic view of pair production by a chromoelectric field formed in the wake of two

receding ultra-relativistic nuclei. The field is here taken to be Abelian, and therefore an

ordinary electric field, and further assumed to be homogeneous and to fill all space.

2. A simplistic model for the tunneling mechanism by which the presence of a homogeneous

electric field allows pairs in the Dirac sea to emerge as real particles. The latent pair, at

energy −2mc2, corresponding to the combined rest-mass energy, is viewed as bound in a

fictitious potential V (x). The presence of the electric field provides a potential −eEx, which

lowers one side of the barrier and permits tunneling from the total of the two potentials.

3. The number of pairs produced per unit volume (or length, since we have only one spatial

dimension here) and momentum (in units of the particle mass m) interval dk at p = k− eA

for e2/m2 = 1 and Ẽ(0) = eE(0)/m2 = 1 at time τ = mt = 130, all in scaled, dimensionless

units as indicated. In the right-hand figure, the solid line shows the result of smoothing the

exact numerical solution on the left by combining 75 bins into one, and the dashed line is

the solution of eq. (20) for f(p, t) under these same conditions.

4. Results for Ẽ(τ) and j̃(τ) for Ẽ(0) = 4 and e2/m2 = 0.1 in the same units defined in

the caption to the previous figure. The solid line shows the solutions to the coupled field

equations; the dashed line is for the Boltzmann equation (20); and the dot-dash line—which

for short times is almost indistinguishable from the solid line—is the Boltzmann equation

modified by a boson enhancement factor.

5. Results in three spatial dimensions (3+1) for Ẽ(τ) and j̃(τ) for Ẽ(0) = 7 and e2/m2 = 4

in the same units defined in the caption to fig. 3. The solid line shows the solutions to the

coupled field equations and the dashed line is for the Boltzmann equation (20).
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