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Normalized hypercubic smearing improves the behavior of dynamical Wilson-clover fermions, but
has the unwanted side effect that it can occasionally produce spikes in the fermion force. These
spikes originate in the chain rule connecting the derivative with respect to the smeared links to the
derivative with respect to the dynamical links, and are associated with the presence of dislocations in
the dynamical gauge field. We propose and study an action designed to suppress these dislocations.
We present evidence for improved performance of the hybrid Monte Carlo algorithm. A side benefit
is improvement in the properties of valence chiral fermions.

I. INTRODUCTION

Smeared links are widespread in present-day lattice
gauge theory simulations. A smeared link Vx,µ ∈ U(Nc)
is a parallel transporter from x to x+µ̂ that is constructed
from the dynamical gauge field Ux,µ ∈ SU(Nc) in the
vicinity of the lattice sites x and x+ µ̂. The replacement
of the dynamical, or thin, links Ux,µ in the fermion action
by smeared, or fat, links Vx,µ typically leads to a reduc-
tion of the discretization error. Intuitively, the fat links
Vx,µ provide a smoother background for the fermions to
propagate in, resulting in a more continuum-like behavior
and thus smaller lattice artifacts.

In our own work on lattice gauge theory with fermions
in higher representations we have been using normalized
hypercubic (nHYP) smeared links in the Wilson-clover
fermion action [1, 2]. We have indeed observed much
reduced discretization effects. This allowed us to reach
deeper into strong coupling, as well as to keep the clover
term at its tree-level value cSW = 1 [3, 4].

Our simulations with dynamical fermions were car-
ried out with the standard Hybrid Monte Carlo (HMC)
algorithm [5]. We use the familiar tools to acceler-
ate the molecular dynamics (MD) integration: an addi-
tional heavy pseudofermion field as suggested by Hasen-
busch [6]; multiple time scales for nested MD integration
levels [7]; and a second-order Omelyan integrator [8].

This arsenal of techniques lends itself to many varia-
tions. As an example, one can try to improve the over-
all performance of the algorithm by using several inter-
mediate Hasenbusch masses, each with its own pseud-
ofermion action, at the same MD integration level. The
idea is that, unlike the number of nested integration lev-
els, which can only be changed discretely, the masses of
the additional heavy pseudofermions can be tuned con-
tinuously, allowing for a more efficient optimization. This
approach turned out to be successful for domain-wall
fermions [9, 10].

We have experimented with these improvement
schemes, but in many cases we have been stymied by
continued low acceptance. Examination of our results
suggests that the explanation of the problem lies in our
smearing procedure. In the domain-wall simulations of
the RBC and UKQCD collaborations [9, 10], smeared
links have not been used, and the fermion force was ob-
tained by directly differentiating the pseudofermion ac-
tion with respect to the dynamical links Ux,µ. In our
simulations, on the other hand, we first differentiate the
pseudofermion action with respect to the nHYP links
Vx,µ, and then apply the chain rule that is needed to
convert the derivative with respect to the nHYP links
into a derivative with respect to the dynamical (thin)
links Ux,µ. As will be clear below, this chain rule is the
origin of our difficulties.

In this paper, we describe the problem and propose
and study a remedy. Reduced acceptance is a result of
spikes in the force; these appear in the chain-rule calcula-
tion because of dislocations in the dynamical gauge field,
which produce large derivatives through the normaliza-
tion step in the smearing. Our remedy is a new term
in the gauge action, which suppresses these dislocations.
This tames the fluctuations of the fermion force.

In Sec. II we present the evidence for the connection
between the fat-to-thin chain rule and the acceptance of
the HMC algorithm. In Sec. III we present the new term
in the gauge action, designed to suppress dislocations. In
Sec. IV we display the resulting improvement in perfor-
mance of the HMC algorithm. We have also observed a
side benefit—better behavior of chiral valence fermions,
as we report in Sec. V. We conclude with a discussion in
Sec. VI.

Of the smearing techniques in widespread use, Highly
Improved Staggered Quarks, known as HISQ [11, 12],
also make use of a normalization (i.e., reunitarization)
step [see Eq. (1) below]. Our technique can be applied
to them as well. Stout links [13] do not: The smeared
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TABLE I: Ensembles used in this study and overall perfor-
mance. The parameter γ is the coefficient of the new term in
the gauge action, see Eqs. (10) and (14) below. β is the usual
plaquette coupling, and κ the hopping parameter. n1, n2 and
ng are the number of steps of the three MD integration levels.
The last column gives the acceptance rate. In all cases the
lattice size is L3

× T = 123 × 24, and the trajectory length is
set to unity. The number of configurations in each ensemble
ranges between 400 and 800.

γ β κ n1 n2 ng acc.
0 9.6 0.1292 16 2 6 86%
0 9.65 0.129 16 2 6 92%
0.125 7.8 0.130 12 1 5 82%
0.25 5.6 0.130 12 1 5 92%

link is an analytic function of the thin links, and the
problem we encounter with nHYP smearing is avoided.
In favor of nHYP links, we recall their advantage, that
the smearing range is small. Stout smearing, on the other
hand, is usually repeated several times, giving rise to a
less local fermion action. Local hypercubic geometry can
be combined with the analytic stout recipe as HEX [14]
or sHYP [2] smearing.

II. CHAIN RULE AND ACCEPTANCE RATE

Schematically, an nHYP link V is constructed as

V = P(Ω) ≡ ΩQ−1/2 , (1)

where1

Q = Ω†Ω , (2)

and Ω is a weighted sum over paths (the precise defi-
nition will be given in the next section). Let S be a
pseudofermion action that depends explicitly only on the
fat links, and suppose that U is one of the thin links
on which the weighted sum Ω depends. The thin-link
force ∂S/∂U is related to the fat-link force ∂S/∂V via
the “fat-to-thin” chain rule,

∂S

∂U
=

Nc
∑

i,j=1

(

∂S

∂Vij

∂Vij

∂U
+

∂S

∂V ∗
ij

∂V ∗
ij

∂U

)

, (3a)

∂V

∂U
=

∂Ω

∂U
Q−1/2 +Ω

∂Q−1/2

∂U
. (3b)

Clearly, even if the fat-link force is well-behaved, small
eigenvalues of Q can generally lead to large terms in the

1 In the numerical implementation we modify Q = Ω†Ω + ζ, with
ζ = 10−6, to avoid accidental crashes.

thin-link force. For Q to have an exceptionally small
eigenvalue, the dynamical gauge field needs to be rough,
or, loosely speaking, a dislocation should be present. At
the same time, one should keep in mind that a locally
rough gauge field does not always give rise to such ex-
ceptionally small eigenvalues. We will return to these
considerations in more detail below.
The model we used for our tests is an SU(4) gauge

theory with two Dirac fermions in the two-index anti-
symmetric (sextet) representation. The gauge action is
the usual Wilson plaquette action

Splaq =
β

2Nc
Re tr

∑

x

∑

µ6=ν

(1− Ux,µUx+µ̂,νU
†
x+ν̂,µU

†
x,ν) ,

(4)
with Nc = 4, to which we add a new piece, to be de-
scribed below, with coefficient γ. As already mentioned
we are using the Wilson-clover fermion action with nHYP
links, with hopping parameter κ, and with cSW = 1. We
have one Hasenbusch mass µ = 0.2 that effectively sep-
arates high- and low-momentum modes in the fermion
determinant. The total pseudofermion action is thus

Spf = Slow + Shigh + SLU , (5)

Slow = φ†
1

1

M
(MM † + µ2)

1

M †
φ1 , (6)

Shigh = φ†
2

1

M †M + µ2
φ2 , (7)

where φ1 and φ2 are two independent pseudofermion
fields. SLU is the additional pure-gauge term result-
ing from LU preconditioning, while M is the LU-
preconditioned fermion matrix. The force due to Slow,
which is sensitive to the small eigenvalues of M , is inte-
grated in the outer MD level of the Omelyan integrator
with n1 steps per trajectory. The next level, with n2

steps, integrates the force due to Shigh, which is sensitive
to the large eigenvalues of M , as well as the force coming
from SLU. All these terms depend on the nHYP links.
The force due to the new term, which we will introduce
in the next section, is also integrated at this level. Fi-
nally, the force due to the Wilson plaquette action (4) is
integrated in the innermost level with ng steps.
We list the ensembles that we use for comparisons in

Table I. This table also gives figures for the performance
of the HMC algorithm before and after adding the new
term, to be discussed below. In order to verify the sim-
ilarity of the ensembles with and without the new term,
we present some results for particle spectra and other
physical quantities in Table II.
The crucial diagnostic information for two of our en-

sembles is presented in Table III. Let us begin with the
data that pertain to the original action, that is, γ = 0.
These data, which are maximum and average impulse
before and after the chain rule, point to what has to
be improved. The first section of three rows, labeled as
“fat,high,” provides information on the fat-link impulse
resulting from Shigh. Next, the “fat,low” section gives
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TABLE II: Physical properties of the ensembles. mq is the quark mass as determined from the unimproved axial Ward identity
[3]. r1 is the larger Sommer scale [15, 16], while mπ and mρ are the pseudoscalar and vector meson masses respectively. All
results are given in lattice units.

γ β mq r1 r1m
2
π/mq (mπ/mρ)

2

0 9.6 0.0588(4) 3.04(6) 9.1(2) 0.43(1)
0 9.65 0.0471(4) 3.53(14) 12.2(5) 0.44(1)
0.125 7.8 0.0484(5) 3.12(5) 9.7(2) 0.40(1)
0.25 5.6 0.0575(3) 3.22(5) 10.7(2) 0.48(1)

TABLE III: Maximal and average impulse per trajectory before and after the chain rule. Results are shown for accepted and
for rejected trajectories separately. We omit the standard deviation if it is less than 1%.

γ = 0, β = 9.6 γ = 1/4, β = 5.6
accept reject accept reject

fat,high max 0.0783 0.0787 0.211 0.211
avg 0.0312 0.0312 0.0847 0.0848
max/avg 2.51 2.52 2.49 2.49

fat,low max 0.093(1) 0.091(2) 0.119(2) 0.112(4)
avg 0.0144 0.0144 0.0198 0.0198
max/avg 6.4 6.3(1) 6.0(1) 5.7(2)

thin max 0.40(2) 0.80(8) 0.87(2) 0.95(7)
avg 0.0134 0.0134 0.0708 0.0708
max/avg 30(1) 60(6) 12.3(3) 13(1)

information on the fat-link impulse from Slow. Last, the
“thin” section gives information on the thin-link impulse
resulting from the total fat-link impulse after the appli-
cation of the fat-to-thin chain rule.
In each section, the first row gives the maximal impulse

per link in each MD trajectory, averaged over trajecto-
ries, separately for accepted and for rejected trajectories.
The next row similarly gives the average impulse. The
third row gives the ratio of mean maximal impulse to
average impulse.
The main thing to notice about the fermions’ fat-link

impulses of the γ = 0 ensemble is that they are ex-
actly the same for accepted and for rejected trajecto-
ries. In other words, there is absolutely no correlation
between the fermions’ fat-link impulses and the result of
the Metropolis test of the trajectory.
By contrast, the thin-link impulses of the γ = 0

ensemble exhibit a clear distinction between accepted
and rejected trajectories. For accepted trajectories the
max/avg ratio is about 30, whereas for rejected trajec-
tories it is twice as big. Histograms of the maximal thin
impulse can be found in the upper row of Fig. 1. The
difference in the mean value of the maximal impulse be-
tween the left and right panels is clearly visible. Also the
shapes of the two distributions are quite different.
Our hypothesis is that when the bare coupling is strong

enough, dislocations in the dynamical gauge field be-
come abundant. Sometimes, such dislocations will give

rise to exceptionally small eigenvalues of the matrix Q of
Eq. (2). Through the fat-to-thin chain rule (3), the small
eigenvalues of Q generate spikes in the thin-link impulse,
which, in turn, results in a bigger probability for failing
the Metropolis test at the end of the trajectory.

It is obvious that a large impulse in the final, thin-
link force causes rejection of a trajectory. What is new
is our observation that there is no large impulse in the
initial, fat-link calculation. Evidently the problem lies in
the chain rule. What contributes to the severity of this
problem is that even a single spike for a single link at a
single update step of the whole trajectory, if it is too big,
has the potential of producing such a violation of MD en-
ergy conservation that will result in failing the Metropolis
test. The question is whether we can do something about
it.

III. DISLOCATION-SUPPRESSING ACTION

FOR nHYP LINKS

In four dimensions, nHYP links Vx,µ are constructed
from the dynamical gauge field Ux,µ via three successive
smearing steps [1, 2]. Each step consists of first con-
structing a weighted sum over staples, which is then re-
unitarized. Explicitly,
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Ωx,ρ;ξ = (1− α3)Ux,ρ +
α3

2

(

Ux,ξUx+ξ̂,ρU
†
x+ρ̂,ξ + U †

x−ξ̂,ξ
Ux−ξ̂,ρUx−ξ̂+ρ̂,ξ

)

, (8a)

V̄x,ρ;ξ = P(Ωx,ρ;ξ) ,

Ω̄x,µ;ν = (1− α2)Ux,µ +
α2

4

∑

ρ6=µ,ν
ξ 6=µ,ν,ρ

(

V̄x,ρ;ξV̄x+ρ̂,µ;ξV̄
†
x+µ̂,ρ;ξ + V̄ †

x−ρ̂,ρ;ξV̄x−ρ̂,µ;ξV̄x−ρ̂+µ̂,ρ;ξ

)

, (8b)

Ṽx,µ;ν = P
(

Ω̄x,µ;ν

)

,

Ω̃x,µ = (1− α1)Ux,µ +
α1

6

∑

ν 6=µ

(

Ṽx,ν;µṼx+ν̂,µ;ν Ṽ
†
x+µ̂,ν;µ + Ṽ †

x−ν̂,ν;µṼx−ν̂,µ;ν Ṽx−ν̂+µ̂,ν;µ

)

, (8c)

Vx,µ = P
(

Ω̃x,µ

)

.

The reunitarization operator P is defined in Eq. (1).
Keeping track of this construction in reverse order, one
can see that the staple sum extends into a different direc-
tion at each smearing step. The outcome is that a given
fat link Vx,µ depends on a particular thin link Uy,ν if and
only if there exists a hypercube to which both Vx,µ and
Uy,ν belong.2

We are now ready to introduce the dislocation-
suppressing action for nHYP smearing. This is done by
adding to the pure-gauge action Sg a new term,

Sg = Splaq + SNDS , (9)

where the new term is

SNDS =
1

2Nc

∑

x

tr



γ1
∑

µ

Q̃−1
x,µ + γ2

∑

µ6=ν

Q̄−1
x,µ;ν

+γ3
∑

ρ6=ξ

Q−1
x,ρ;ξ



 . (10)

The motivation for introducing the nHYP Dislocation
Suppressing action, or NDS action for short, is clear. The
chain rule can produce spikes in the thin-link force asso-
ciated with small eigenvalues of Qx,ρ;ξ, Q̄x,µ;ν or Q̃x,µ.
The NDS action is designed to suppress them, by creat-
ing a repulsive potential that is proportional to the sum
of inverse eigenvalues of the Q matrices.

If we were to add the NDS action SNDS to the usual pla-
quette action while holding β fixed, we would be pushed
back into weaker coupling, and smaller lattice spacing.

2 Like the original thin links, the nHYP links Vx,µ reside in the fun-
damental representation. In our work on higher-representation
fermions we first construct the nHYP links Vx,µ, and then apply
the appropriate group theoretic formulae to construct links in
the desired representation from Vx,µ. This also adds a step to
the chain rule in calculating the MD force.

From the weak-coupling expansion Ux,µ = exp(iaAxµ)
we obtain the bare coupling as

1

g20
=

β

2Nc
+

1

Nc

(γ1α1

3
+ γ2α2 + γ3α3

)

. (11)

The crucial question, which can only be addressed by
performing numerical tests, is whether the NDS action
can improve the performance of the HMC algorithm un-
der the same physical conditions. This question will be
studied in the next section.
In concluding this section we note that SNDS is easily

implemented in the existing code. Using the generic nota-
tion of Sec. II, first, Q−1/2 is needed for the construction
of the nHYP links, so one obtains Q−1 = Q−1/2Q−1/2

with basically no extra cost. Also, for the calculation of
the force, we have

∂

∂U
trQ−1 = 2 tr

(

Q−1/2 ∂Q−1/2

∂U

)

. (12)

Once again, as can be seen from Eq. (3), both Q−1/2

and ∂Q−1/2/∂U have already been calculated, and so it
is trivial to obtain their product.

IV. IMPROVEMENT OF MOLECULAR

DYNAMICS UPDATE

In our numerical work we use the following values for
the smearing parameters [1, 2]

(α1, α1, α1) = (0.75, 0.6, 0.3) . (13)

Also, we have limited our numerical tests of SNDS to the
case

γ1 = γ2 = γ3 = γ , (14)

where the values of γ are shown in the first column of
Table I. We have two ensembles without the NDS action,
a β = 9.65 ensemble with a slightly weaker bare coupling
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and a β = 9.6 ensemble with a slightly stronger bare
coupling; one ensemble with γ = 1/8 and β = 7.8, and
one with γ = 1/4 and β = 5.6. In trying to achieve the
same physical conditions one can never do a perfect job
at non-zero lattice spacing. Still, the physical properties
listed in Table II show that all four ensembles exhibit
reasonably similar physics.3

A. The thin-link force and acceptance

The first piece of evidence that the NDS action actually
works is the performance figures shown in Table I. While
maintaining the good acceptance rate intact, we have
been able to reduce n1 from 16 to 12, and n2 from 2 to
1, which is a saving of more than 50% in the number of
fermion inversions per trajectory.
In order to understand the origin of this improve-

ment we look at the impulses of the ensemble with (γ,
β)=(0.25, 5.6) and compare them to those of the (0, 9.6)
ensemble, as shown in Table III. First, like the (0, 9.6)
ensemble, also in the case of the (0.25, 5.6) ensemble the
fat-link impulses are the same for accepted and for re-
jected trajectories. Once again, the Metropolis test is
uncorrelated with the fat-link impulses produced by the
pseudofermions.
In comparing the actual values of the impulses between

the two ensembles we should keep in mind that the max-
imal and average impulses reflect the different numbers
of update steps chosen in the two case. However, the
different time increments cancel out in the max/avg ra-
tios. Indeed, these ratios turn out to be equal in all four
cases: they are basically the same for accepted and re-
jected trajectories, as well as for the (0, 9.6) and (0.25,
5.6) ensembles. This shows that the fermion sector did
not bias the acceptance rate one way or another.
The main difference between the two ensembles is re-

vealed in the thin-link impulse, in the bottom section of
Table III. While in the case of the (0, 9.6) ensemble the
max/avg ratios were 30 and 60 for accepted and for re-
jected trajectories respectively, in the case of the (0.25,
5.6) ensemble they are ∼ 12 for both accepted and re-
jected trajectories. The NDS action has produced thin-
link impulse ratios that are, first, smaller, and second,
uncorrelated with the Metropolis test. These features
are also seen in the histograms in the bottom panels of
Fig. 1. Indeed, the two histograms of the (0.25, 5.6) en-
semble have essentially the same shape.
The conclusion is that, while maintaining roughly the

same physical conditions, the NDS action with γ = 1/4

3 In the weak-coupling regime, it follows from Eqs. (11) and (13)
that β must be shifted by −2.3γ in order to keep the bare cou-
pling g0 fixed. As can be seen from Tables I and II, the actual
(γ, β) pairs that produce roughly equal physics involve a much
bigger shift in β, showing that we are very far from the range of
applicability of Eq. (11).

successfully removes virtually all of the spikes of the thin-
link impulse that resulted from the fat-to-thin chain rule.
This is one of the main results of this paper.
A complementary observation is the following. Unlike

the maximal thin-link impulse, the average thin-link im-
pulse is the same for accepted and for rejected trajectories
in both the (0, 9.6) and (0.25, 5.6) ensembles. However,
this average value is more than 5 times bigger in the case
of the (0.25, 5.6) ensemble than in the (0, 9.6) ensemble.
The removal of the high-end tail of the distribution of the
thin-link impulse by the NDS action has allowed us to in-
crease the average impulse (by decreasing the numbers of
steps), without harming the acceptance rate.

B. Integrator instability and “safety trajectories”

With n2 = 1 in the γ 6= 0 ensembles of Table I, an
interesting practical question is how aggressively can one
reduce the number of steps of the outer level, n1. For
example, how would the acceptance rate change if n1 is
further decreased from 12 to 8?
We have carried out an exploratory study of this ques-

tion on ensembles with parameter values that are similar
to (but not necessarily identical with) those of the γ 6= 0
ensembles of Table I. Our main finding is that if we keep
lowering n1, at some point we will run into a situation
where the HMC update experiences occasional, but long,
sequences of rejections. The obvious first thought would
have been that the fat-to-thin chain-rule spikes of the
thin-link impulse are back. However, an examination of
the pattern of impulses leads to a different picture. First,
the long sequences of rejections are typically character-
ized by spikes in MD energy non-conservation as large as
∆S = O(100). Second, an examination of the MD time
histories reveals that the occurrence of spikes of ∆S is
virtually always correlated with (much smaller) spikes of
both the maximal and the average fat-link force coming
from Slow.
The conclusion is that we are looking at a familiar inte-

grator instability. The breakdown of the MD integration
was nicely exemplified in the case of a free harmonic os-
cillator in Ref. [17]. If ω is the frequency of the oscillator,
and δτ is the time increment of the (leapfrog) update, the
breakdown occurs when the product ω δτ exceeds a crit-
ical value that depends on the MD integration scheme.
In our simulations, the time increment δτ was held

fixed. Of course, since we are dealing with an interacting
field theory, many oscillators are present simultaneously,
and their frequencies are changing with the MD evolu-
tion. In effect, there is therefore a maximal frequency
ωmax that scales with λ−2

min, where λ2
min is the smallest

eigenvalue of M †M (see Eq. (6)). We have looked at
the low-lying spectrum of M †M on some of our stuck
streams and found that, indeed, the rise in the fat-link
force of Slow is correlated with the occurrence of an ex-
ceptionally small eigenvalue. This, in turn, gives rise to
an exceptionally large value of the product ωmax δτ , and,
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TABLE IV: Properties of the kernel operator [26]. The third
column gives the average value of its 10 lowest eigenvalues.
The last column gives the number of matrix multiplications
needed for the construction of the overlap operator.

γ β λ̄ Nop × 105

0 9.6 0.106(12) 3.0
0 9.65 0.163(11) 1.7
0.125 7.8 0.182(11) 1.7
0.25 5.6 0.322(15) 1.1

ultimately, to the onset of an integrator instability [17].

The alert reader would notice that the new problem
is itself a sign of success. Indeed, it is the very smooth
fat-link background, provided by the NDS action, which
allows for the Wilson matrix to develop such small eigen-
values that are eventually capable of generating integra-
tor instabilities.

Various solutions to this problem exist in the literature.
First, obviously, the simplest solution is to avoid reduc-
ing the number of steps too much. The high acceptance
rates of the γ 6= 0 ensembles reported in Table I suggest
that, with n1 = 12, we did not run into any integrator
instabilities. This is confirmed by an examination of the
histories of these runs. The (0.25,5.6) ensemble shows no
∆S spikes at all. Perhaps because of its smaller γ, the
(0.125,7.8) ensemble has a few spikes, but none of them
has generated a sequence of rejections.

One can do still better by adopting the strategy of
Ref. [18]. According to this strategy, one uses a rela-
tively small number of steps for most trajectories. Every
once in a while, a larger number of steps is used for a
“safety trajectory.” The idea is that, in case the simula-
tion has run into a sequence of rejections resulting from
an integrator breakdown, that sequence will terminate at
the next safety trajectory, where, thanks to its finer time
increment, the trajectory will (very likely) be accepted.

We have found that, as long as integrator instabilities
are rare, even a modest increase in n1 is usually enough
to eliminate all of them. As an example, the already
noted high acceptance rates of the γ 6= 0 ensembles of
Table I suggest that we might use n1 = 12 only for the
safety trajectories, while using a smaller number of steps,
perhaps n1 = 8, for most trajectories. The interval be-
tween two safety trajectories might be taken to be 5 or 10
trajectories.4 The question of what is the optimal com-
bination invites study, but it is clear that the insertion of
safety trajectories is a very cheap cure for the instability
problem.

4 Reversibility of the MD update requires that the interval between
two safety trajectories will be fixed beforehand.

V. IMPROVEMENT OF VALENCE CHIRAL

FERMIONS

Chiral fermions—domain-wall fermions and overlap
fermions—are widely used nowadays [19–21]. While
domain-wall fermions are used both as dynamical [10, 22]
and as valence fermions, overlap fermions are mostly used
as valence fermions (see, however, Ref. [23]).
These chiral fermions are built from a kernel K, which

is supercritical Wilson-like (hermitian) operator. Ideally,
the kernel would have a spectral gap. In reality, there
is never a clean gap. Instead the kernel operator has
a mobility edge that is at O(1) in lattice units, with a
localized spectrum below the mobility edge and an ex-
tended spectrum above it [24]. The near-zero spectrum
of localized eigenmodes is always undesirable. In the case
of domain-wall fermions it is a dominant source for the
residual mass, which is a measure of the imperfection of
the chiral symmetry of the domain-wall system. In the
case of overlap fermions, such near-zero eigenmodes need
to be deflated during the construction of the overlap op-
erator itself. When more of them are present, this makes
the numerical construction more expensive and/or less
accurate.
Since it is localized, a near-zero eigenmode of the ker-

nel operator often owes its existence to a dislocation in
the gauge field [25]. Now, the NDS action suppresses a
certain family of dislocations, and so it is interesting to
study whether it has any effect on the behavior of chiral
fermions. As we will see, we indeed find a clear improve-
ment.
We have used nHYP links to construct the kernel op-

erator introduced in Ref. [26], and studied its properties
on our set of ensembles. The third column of Table IV
gives the average value λ̄ of the 10 lowest kernel eigen-
values |λi|, i = 1, . . . , 10. We see that λ̄ grows with γ,
and that, for γ = 1/4, it is significantly larger than in the
other cases. This shows that the dislocation-suppressing
effect of the NDS action also helps in reducing the num-
ber of near-zero eigenvalues of the kernel operator. This
effect is also seen in Fig. 2, which shows histograms of the
same 10 lowest kernel eigenvalues. Moreover, the deple-
tion of the near-zero spectrum speeds up the numerical
construction of the (valence) overlap operator. This can
be seen in the last column of Table IV, which shows the
average number of matrix multiplications by the kernelK
that is needed for the construction process to converge to
a given precision. For valence domain-wall fermions, we
would correspondingly expect a reduction of the residual
mass at a fixed size of the fifth dimension.

VI. DISCUSSION

The chain rule relating a force with respect to nHYP
links to a force with respect to the dynamical links can
give rise to relatively rare, but large, spikes of the total
impulse, which, in turn, degrade the performance of the
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HMC algorithm. In this paper we propose a new term in
the gauge action aimed to suppress such spikes. We have
shown that, for (approximately) fixed physical parame-
ters, the new term indeed improves the performance of
the HMC algorithm. As a side benefit, it improves the
behavior of chiral valence fermions.
We have attributed the chain-rule spikes in the force

to dislocations in the gauge field—a somewhat vague
term. Indeed we have identified the dislocations, op-
erationally, by the very fact some of the Q matrices
(Eqs. (2) and (10)) have exceptionally small eigenvalues.
This is analogous to what is customary when dealing with
domain-wall or overlap fermions, where the presence of
a dislocation is identified by the existence of a near-zero
(localized) eigenvalue in the spectrum of the kernel op-
erator. What is common to both cases is that one is not
interested in the general roughness of the gauge field per

se, but rather in concrete undesirable effects that this
roughness can produce.
Over the years, a large body of work has been devoted

to improving the performance of chiral fermions. While it
is beyond the scope of this paper to review all this work,
we would like to draw some useful lessons.5 A common
way to improve the behavior of chiral fermions is to use
so-called improved gauge actions. Examples include var-
ious variants of the Symanzik action, the Iwasaki action,
and the DBW2 action. Each of these actions consists of a
sum over a few Wilson loops. The relative weight of each
Wilson loop is fixed either by finding an approximate
solution of a truncated renormalization group transfor-
mation, or by demanding the elimination of the leading
discretization effects perturbatively. Generally speaking,
these improved actions produce a smoother gauge field
than the simple plaquette action (4). The decreased
roughness of the gauge field typically gives rise to fewer
near-zero modes in the kernel’s spectrum [24, 27].
One method designed to suppress the near-zero eigen-

values of the chiral fermions’ kernel K is the so-called
Dislocation-Suppressing Determinant Ratio (DSDR) [10,
28]. The basic idea is that, if we were to add to the gauge
action the term

− log det(K†K) , (15)

this would produce a logarithmically divergent repulsive
potential that entirely suppresses any exact zero modes
of the kernel operator. In practice, using the term (15)
also has undesirable effects, and so, instead, one replaces
K†K in the above expression by a certain rational poly-
nomial of K†K.
The NDS action (10) is analogous to DSDR in that it

targets those dislocations that are responsible for a spe-
cific undesirable feature. Now, such dislocations repre-
sent local, lattice-size structures in the dynamical gauge
field that do not scale. Hence, there is no particular rea-
son to fix the weight of the dedicated, NDS term relative
to other terms in the gauge action, and it might be more
natural to hold fixed the absolute coefficient of the NDS
term while varying the coefficient of the plaquette action
(or of any improved action, if one is being used). This
is what is being done in effect in the domain-wall simu-
lations of the RBC and UKQCD collaborations: a fixed
DSDR term is used while the coefficient of the Iwasaki
gauge action is being varied.

Such technical details need not obscure the basic fact
that all of the various types of improvement usually play
in concert, as was found in the context of domain-wall
and overlap fermions [10, 28]. A new example is what
we have found in this paper: The NDS action, designed
specifically to remove chain-rule spikes in the force for
nHYP smearing, also reduces the density of near-zero
kernel eigenvalues for chiral fermions.

An alternative way to avoid the chain-rule spikes of the
force is to reduce the values of the smearing parameters
[see Eq. (13)]. It was observed in Ref. [29] that the matrix
Q is positive definite if all the smearing parameters are
smaller than 0.5. The dislocations will still be there,
however, and their effect on chiral valence fermions will
be undiminished. Moreover, weakening the smearing will
destroy some of its benefit for approaching the continuum
limit.

We mentioned HISQ fermions [11, 12] , which also in-
corporate the reunitarization step (1). Indeed the same
correlation between small eigenvalues of the matrix Q
and peaks of the MD force has been reported in this
case.6 It is likely that building a dislocation-suppressing
action adapted for this type of smearing would similarly
improve the performance of HISQ simulations.
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FIG. 1: Histograms of the maximal thin-link force (corresponding to the “thin” section of Table III), for 400 trajectories each.
Notice the different vertical scales for accepted (left) and for rejected (right) trajectories.
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FIG. 2: Histograms of the lowest 10 eigenvalues of the kernel operator. The vertical axis is the average number of eigenvalues
per bin, where the bin size is 0.05. For the (γ, β)=(0, 9.6) ensemble, the lowest 10 eigenvalues of all the configurations were
within the shown interval, whereas for the other cases, some of these eigenvalues fall outside of this interval. Notice the depletion
of near-zero eigenvalues as γ is increased.


