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We have measured the running coupling constant of SU(3) gauge theory coupled to Ny = 2 flavors
of symmetric representation fermions, using the Schrodinger functional scheme. Our lattice action
is defined with hypercubic smeared links which, along with the larger lattice sizes, bring us closer
to the continuum limit than in our previous study. We observe that the coupling runs more slowly
than predicted by asymptotic freedom, but we are unable to observe fixed point behavior before
encountering a first order transition to a strong coupling phase. This indicates that the infrared

fixed point found with the thin-link action is a lattice artifact.

The slow running of the gauge

coupling permits an accurate determination of the mass anomalous dimension for this theory, which
we observe to be small, v,, < 0.6, over the range of couplings we can reach. We also study the bulk
and finite-temperature phase transitions in the strong coupling region.

PACS numbers: 11.15.Ha, 11.10.Hi, 12.60.Nz

I. INTRODUCTION

Several possibilities for new physics beyond the Stan-
dard Model involve a new strongly interacting sector of
gauge fields and light fermions. In the oldest such idea,
technicolor, interactions are presumed to be asymptoti-
cally free at very short distance but strong at long dis-
tance, leading to a fermion—antifermion condensate <1/71/)>
that replaces the Higgs vacuum expectation value [1]. A
more recent proposal couples the standard model to a
sector of “unparticles,” in which long distance dynamics
is conformal in the limit of zero fermion mass [2]. De-
termining whether either of these scenarios occurs in a
candidate theory is a nonperturbative question. In the
last few years many groups have begun to attack it using
lattice methods [3].

One common tool for diagnosing the infrared structure
of a gauge theory is its beta function. In perturbation
theory it has the expansion
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where, for an SU(IV) gauge theory with Ny flavors of
fermions in representation R,

by = 1—31 Cy2(Q) — %NfT(R) (2)
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Here C2(R) is the value of the quadratic Casimir operator
in representation R [where G denotes the adjoint repre-

sentation, so C2(G) = N, while T'(R) is the conventional
trace normalization. We are interested in asymptotically

free theories, so we demand b; > 0 to force an infrared
repulsive fixed point at g = 0. If by < 0 while b > 0,
the two-loop beta function will have a zero [4, 5] at some
g = g«. Whether the theory is a candidate for strongly
interacting dynamics or for conformal behavior at long
distance scales depends on whether the complete, non-
perturbative (3(¢g?) has a zero. If it does have such an
infrared attractive fixed point (IRFP), then we have an
unparticle theory with a scale-invariant coupling g. at
large distances. If it does not, so that g runs to strong
coupling in the infrared, we have a technicolor candidate.
The technicolor category also includes the possibility of
a coupling region where 3(g?) approaches zero without
crossing it. The coupling would then evolve slowly be-
tween widely differing energy scales. “Walking techni-
color” is built on this scenario [6-8].

In a massive theory, the running coupling g(¢?) is sup-
plemented by the running fermion mass m(u). The coun-
terpart of the beta function is the anomalous dimension
Ym of the mass operator 9). It determines the running
of the mass parameter according to

Y = —m(g”)m(p). (4)

If the system is conformal at zero fermion mass mg, then
near my = 0 the correlation length & scales as

§rvmyg (5)

where ¢y, = 1 + v (g«) is the leading relevant exponent
of the system (in the language of critical phenomena). In
lowest order in perturbation theory,
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In the massless theories used for technicolor, ~,, gov-
erns the running of the condensate <1/31/)> It is thus an
important diagnostic for realistic “extended” technicolor
models. Phenomenological constraints on such models
require it to have a large, nonperturbative value.

Briefly [9], at issue is the dual role of the conven-
tional Higgs condensate in giving masses both to the
weak bosons W, Z and to the quarks and leptons. In
technicolor theories, the W mass comes from the tech-
niquark condensate <1/;1/)>; this demands that the tech-
nicolor scale Arc be not much above the weak scale,
Arc ~ 1 TeV. The light fermions, on the other hand, get
their mass from joining the techniquarks in a multiplet
of an extended technicolor (ETC) gauge group, which
breaks to the technicolor group at scale Agrc. The cou-
pling of the techniquark condensate to the light fermions
via emission of ETC gauge bosons gives the light fermions
their masses,
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On the other hand, the exchange of ETC gauge bosons
generates flavor-changing neutral currents (FCNC)
among the light fermions, with effective vertices ~
1/A%;c. Suppression of FCNC demands that Agrc
be pushed up beyond 1000 TeV, but then the fermion
masses generated by Eq. (7) come out too light, as small
asmy S 1 MeV.

The solution of this problem in ETC theories lies in
the recognition that the two uses of the <1/;1/)> condensate
involve its evaluation at two very different energy scales.
The weak boson masses are connected to the condensate
at Apc, while the fermion masses are determined by its
value at Agrc. The condensate runs between these two
scales according to its anomalous dimension, so that the
numerator in Eq. (7) is really
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Since the ratio Aprc/Arc ~ 103, a “condensate en-
hancement” of this order can account for most quark
masses—but only if 7, is close to 1.

The walking-technicolor scenario combines a near-zero
of the beta function with a large anomalous dimension
for the mass. One envisions a (perhaps) rapid evolution
of the coupling away from g = 0 at some extremely high
energy scale, which slows to near-fixed-point behavior at
some moderately large coupling g at scale Agrc. The
coupling then runs very slowly until Ar¢ is reached, even
as the techniquark mass runs with a large anomalous
dimension v,,. At Arc, the coupling is a bit stronger

and creates the techniquark condensate; the techniquarks
thereupon decouple and the coupling runs on to strong
values, leaving technicolor confined at low energies.

Most of the ingredients in this story—near-fixed-point
behavior, condensation, and subsequent confinement—
involve nonperturbative physics. Lattice methods, which
have been fairly successful in dealing with the proper-
ties of QCD, are a natural approach to investigate them
[10]. Every candidate model for new physics begs the two
questions:

1. Is the long distance dynamics of the candidate the-
ory conformal, or confining, or something else?

2. What is the value of ~,, in the interesting energy
range?

For some time our program has been to study the gauge
theory proposed for “next-to-minimal” walking techni-
color [11-14]: SU(3) gauge fields coupled to two flavors
of fermions in the two-index symmetric representation,
which is the sextet. In Ref. [15] we measured the running
coupling constant defined in the Schrodinger-functional
background field method. We found, with the small lat-
tices at our disposal, that the integrated beta function
has a zero, indicating that the theory is in a conformal
phase. In Ref. [16] we performed spectroscopic studies in
the theory with non-zero quark mass. We observed two
phases for the system in finite volume: a strong-coupling,
confined phase and a weakly coupled, chirally restored
phase. (See Fig. 1. The massless k.() curve is where
our Schrodinger functional calculations are done.) While
one might interpret the two phases as low- and high-
temperature phases, the phase transition in the mass-
less theory [i.e., at (81, x1)] appeared not to move as the
lattice volume increased; this is in marked contrast to
the usual high-temperature phase transition in confining
gauge theories.

Following these calculations, we changed the lattice ac-
tion from the usual Wilson—clover action (“thin links”)
to an improved action, incorporating normalized hyper-
cubic smearing (“nHYP fat links”) that has shown dra-
matic reduction of lattice artifacts when used for QCD
simulations. One of us [17] performed a finite-size scaling
analysis of correlation lengths in the weak coupling phase,
approaching the massless k. curve. A small anomalous
dimension, 7,, ~ 0.5, was observed at two values of the
bare parameters.!

In this paper we report on a new calculation of the
running coupling constant and of the mass anomalous
dimension, using the improved action on lattice volumes
larger than in Refs. [15, 16]. The first step is to determine
the phase structure of the lattice theory. As with the
original, thin-link action, the improved, fat-link action

L For other recent work on SU(3) gauge theory with sextet
fermions, see [18-20].
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FIG. 1. Sketched phase diagram of the lattice theory in finite
volume, as found for both thin links [16] and fat links (this
paper). For quantitative information see Figs. 2 and 3. The
ke(B) curve (solid), where mgy = 0, exists only in the non-
confining phase; it meets the phase boundary (dashed) at
(B1,k1). The dotted curve indicates the extension of k.(53)
into the confining phase via the metastable non-confining
state.

has a confined phase in which it is not possible to tune the
quark mass to zero. We go beyond Ref. [16] in studying
closely the region where the k. line intersects the phase
boundary, and we find that there is no critical point. The
phase boundary moves up the k. curve very slowly as the
simulation volume grows; it is also affected by the choice
of boundary conditions. As noted in the context of other,
similar gauge theories (e.g., [21]), this phase diagram is
different from that of QCD and it is hard to see how it
can tend to a confining theory in the continuum limit.
Such considerations, however, are far from conclusive.

Turning to the SF calculation, we find that the cou-
pling constant runs more slowly than two-loop perturba-
tion theory would predict. This is such slow running that
we are unable to chain together results from different sets
of bare parameters to construct a picture of g(L) running
over decades of the length scale L. The range of couplings
that we can investigate is limited by the strong-coupling
phase transition. The beta function might cross zero at
the strongest coupling that we can reach, but we cannot
make a strong claim to this effect.

Our previous calculation [15], with the thin-link ac-
tion, was unable to pursue the § function to SF couplings
stronger than g2 ~ 2.5 because of the transition to the
strong-coupling phase. The infrared fixed point found in
that work was at a renormalized coupling g2 ~ 2.0 (see
Fig. 7 below), which was uncomfortably close to the tran-
sition. With the fat-link action we are able to push the

transition to g2 ~ 5, so that the region around g2 ~ 2.0
is well insulated from lattice artifacts. Thus the present
calculation is more reliable when it rules out the fixed
point found previously.

As part of the SF calculation, we compute the anoma-
lous dimension v,,. Even when one takes into account
possible finite-lattice effects, the result has much smaller
uncertainty than the calculation of Ref. [17] and con-
firms its conclusion: 7, is small over our observed range
of couplings.

The outline of the paper is as follows: In Sec. IT we re-
view our lattice action and the techniques we use to mea-
sure the beta function and ~,,. In Sec. III we describe our
studies of the boundary between the strong- and weak-
coupling phases. Sections IV and V contain our results
for the running coupling constant and mass anomalous
dimension. We summarize the calculation in Sec. VI, and
place it in context of other lattice calculations. The ap-
pendix contains data that support our determination of
the phase boundary as presented in Sec. III.

II. METHODOLOGY

A. Lattice action and simulation

We study the SU(3) gauge theory with two flavors of
dynamical fermions in the sextet representation of the
color gauge group. The lattice action is given by the
single-plaquette gauge action and a Wilson fermion ac-
tion with added clover term [22]. The gauge connections
in the fermion action employ the differentiable hypercu-
bic smeared link of Ref. [23], from which the symmetric-
representation gauge connection for the fermion opera-
tor is constructed. The parameters that are inputs to
the simulation are the bare gauge coupling 3 = 6/¢3 and
the fermion hopping parameter x, related to the bare
mass mo by k = (8 + 2mg)~!. Unlike our earlier cal-
culation with the thin-link fermion action, no tadpole
improvement is necessary here and thus we set the clover
coefficient to its tree-level value (i.e., unity). The smear-
ing parameters for the links are the same as in Ref. [23]:
a1 = 0.75, Qo = 0.6, a3 = 0.3.

The molecular dynamics integration is accelerated with
an additional heavy pseudo-fermion field as suggested by
Hasenbusch [24], multiple time scales [25], and a second-
order Omelyan integrator [26]. Lattice sizes range from
6% to 16* sites; some data for the phase diagram were
obtained with lattices of 12 x 63.

B. Why fat links?

The simulations we reported in Ref. [15] were per-
formed using the usual clover action [22] in which the
coefficient cgy of the clover term was adjusted via tad-
pole improvement. When we began the present set of



simulations, we were faced with a choice: either to con-
tinue using the same action and simply to push to larger
lattice volumes, or to attempt as well to improve the ac-
tion further. We chose the latter course.

Improvement criteria are basically identical for any
asymptotically free theory. As one tunes the bare cou-
pling toward zero, the lattice theory should have an
expansion in powers of the lattice spacing a. The
dimension-four terms in this expansion are identical
to those of a continuum action, while the higher-
dimensional terms, which are multiplied by positive pow-
ers of the lattice spacing, correspond to irrelevant oper-
ators. The inclusion of a clover term, for instance, al-
lows the fermion action to be free of O(a) artifacts if
the clover term is appropriately chosen. In general, the
particular choice of lattice discretization is formally irrel-
evant. In practice, however, it will make a big difference
in terms of eliminating lattice artifacts. We chose hyper-
cubic smeared links because of our positive experience
with them in QCD simulations.

Fermionic actions with hypercubic smeared links have
a number of favorable features, which we enumerate in
the context of the present simulation:

1. The gauge fields seen by the fermions are smoother
with a smeared link than they are with a thin link.
The plaquette (in the fermions’ color representa-
tion) is a rough indicator of this. For example, at
(8 = 4.4,k = 0.1351) the thin-link (fundamental)
plaquette has a value of about 0.43 (normalized to
a maximum of 1) while the sextet-representation
smeared-link plaquette is about 0.78 (normalized
likewise). Thus, even at this strong (bare) cou-
pling, one can imagine expanding the link variable
U, ~1+igA, +---in order to recover the contin-
uum action.

2. The value of k.(3), at which the quark mass (see
below) vanishes, is closer to the free-field value of
1/8 with smeared links than it is in our original
thin link calculation. Even at the boundary of the
strong-coupling phase we find k. < 0.136, versus a
range of 0.15-0.17 for the entire range of couplings
studied in the thin-link theory in Ref. [15].

3. Tests with quenched fundamental fermions [27] re-
veal that the nonperturbatively improved clover co-
efficient is very close to its tree level value at fairly
large lattice spacings. Preliminary results show this
to be the case in the present theory as well [28].
This is our justification for setting csy = 1 here.

4. Finite renormalization factors for (partially) con-
served currents are much closer to unity than for
the thin-link clover action. This is easily checked
in one-loop perturbation theory, where the vector
and axial-vector lattice-to-continuum renormaliza-
tion factors are Z = 1+¢*Ca(R)c, where c is a pure
number, a lattice integral [29].

While the formal arguments for improvement via
smearing may be called into question outside the weak-
coupling limit, the practical observations listed above
justify its application and show why results from the
smeared theory are more reliable than those obtained
without smearing. Nonetheless, asymptotic freedom does
underlie the whole philosophy. If an infrared fixed point
were to be found, the theory on the strong-coupling side
of the fixed point would not be asymptotically free. Little
is known a priori about such a strong-coupling theory.

As mentioned in the introduction, we find in the
present study that the use of hypercubic smeared links
allows us to reach a much larger value of the Schrédinger
functional coupling g? than we could get to in Ref. [15],
g% ~ 5 versus about 2.5, before encountering the strong-
coupling phase transition. Thus the region g> ~ 2.0,
where the thin-link calculation indicated an infrared fixed
point, can be studied more reliably.

C. Schriédinger functional and the running coupling

The Schrodinger functional (SF) [30-33] is an imple-
mentation of the background field method that is espe-
cially suited for a lattice calculation. Taking the simula-
tion volume to be a 4-cube of dimension L, one imposes
fixed boundary conditions on the gauge field at ¢ = 0 and
t = L while imposing periodic boundary conditions in the
spatial directions. The classical field that minimizes the
Yang—Mills action subject to the fixed boundary condi-
tions is a background color-electric field. By construction
the only distance scale that characterizes the background
field is L, so the n-loop effective action I' = — log Z gives
the running coupling via

L =g(L)25¢u, (10)

where
Sy = /d%Fju (11)

is the classical action of the background field. When I’
is calculated non-perturbatively, Eq. (10) gives a non-
perturbative definition of the running coupling at scale
L.

Since in a lattice calculation one cannot calculate I
itself, one differentiates Eq. (10) with respect to some
parameter 7 in the boundary conditions. Thus
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The derivative of I" gives an observable quantity, while
K is just a number [31]. We choose boundary fields as
described in Ref. [33]; for these boundary values the co-
efficient K ~ 37.7. The observable,
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TABLE I. Number of hybrid Monte Carlo trajectories (of unit
length) needed to produce the Schrodinger functional coupling
g2 at the bare couplings (B8, ke), for the lattice sizes L used in
this study.

I6] Ke trajectories

L =6a L=28a L =12a L = 16a
5.8  0.12835 8 000 2 300 10 000 -
54  0.12920 8 000 3 050 9 600 -
5.0  0.13062 13 000 6 030 8 800 -
4.8 0.13173 45 000 5 250 16 700 -
4.6  0.13320 74 000 13 400 11 300 22 400
4.4  0.13510 67 200 22 900 11 300 29 200
4.3  0.13617 14 800 15 600 8 000 6 750

is a particular expectation value of the gauge fields and
the Dirac operator Dp. The parameter n enters lin-
early into phase angles so the derivatives on the right-
hand side of Eq. (13) are implemented by putting the
appropriate fixed values in place of the boundary links
[31]. We also impose twisted spatial boundary condi-
tions on the fermion fields as suggested in Ref. [32],
Y(xz + L) = exp(i0)y(z), with § = 7/5 on all three axes
[34].

The observable (13) is quite noisy and requires long
simulation runs, as shown in Table I. The acceptance in
the hybrid Monte Carlo simulations was kept at 80-90%,
except at the strongest couplings for L/a = 16 where we
were forced to use short time steps even to reach accep-
tances as low as 40%.

D. Anomalous dimension

The mass anomalous dimension is determined from
the volume dependence of the renormalization factor Zp
of the isovector pseudoscalar density P? = 1v5(7%/2)v.
(The latter is related by a chiral rotation to 1), which
is the object of interest.) It is computed from two corre-
lators via [35-38]

Ip = Vo (14)

fr(L/2)

fp is the propagator from the ¢ = 0 boundary to a point
pseudoscalar operator at time xg,

fp(xo) = —% Z/dgy d’z <1/)($0)’Y5%a1/1($0)

< S 5ele)). (15)

and we take zo = L/2; here ¢ and { are gauge-invariant
wall sources at ¢ = a, meaning one lattice layer away
from the ¢ = 0 boundary. The normalization of the wall

source is removed by the f7 factor, which is the boundary-
to-boundary correlator,

7_0.
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where ¢’ and ¢’ are wall sources at t = L — a. The
constant ¢ allows imposing a volume-independent nor-
malization condition in the weak-coupling limit.

In SF calculations for QCD, correlators such as (15)
and (16) are usually computed with the spatial link ma-
trices at t = 0 and ¢t = L set to unity. This is because
it is desired to compute Zp with an absolute normaliza-
tion (to fix the physical value of a quark mass, for exam-
ple). Correspondingly, the constant ¢ that normalizes Zp
has only been calculated for these boundary conditions.
Since our interest, however, is in how Zp runs with the
scale L, we will calculate only ratios of values of Zp for
different L at fixed lattice couplings. Because of this, the
overall normalization of Zp is irrelevant. We are thus
free to ignore ¢ and also to use the same boundary con-
ditions for the calculation of Zp as for the simulations
which generated the data for the SF coupling. Thus the
data for Zp came from the same configurations as the
coupling calculation, effectively giving Zp for free. We
set ¢ = 1/v/2 in tabulating Zp below.

E. Quark mass

We studied the massless theory by fixing k = k.(f3),
the point at which the quark mass m, vanishes for each f3.

We define m, using the unimproved axial Ward identity
(AWI),

0> (AG(x,)0%) =2m, > (P*(x,)0%).  (17)

X X

where A2 = ¢y075(7%/2)1) and O% could be any source.
We follow the usual SF procedure and take the source to
be the gauge-invariant wall source at ¢ = a as in Eq. (15).
The correlation functions in Eq. (17) are then measured
at t = L/2, the midpoint of the lattice. The derivative is
taken as the symmetric difference, 9, f(z) = [f(z+ fia) —

f(z = fa)]/ (2a).

III. STRONG COUPLING
A. First-order phase boundary

As shown in Fig. 1, both the thin-link and the fat-
link lattice theories show a first-order phase transition
separating a low-3 (strong bare coupling) phase from a
high-8 (weak bare coupling) phase. Our work on the
thin-link [16] and fat-link [17] theories showed that:



e The low-( phase is confining, as revealed by the
heavy-quark potential (for sources in the funda-
mental representation).

e The high-g phase is chirally restored, as revealed
by parity doubling between the scalar and pseu-
doscalar masses, and also between the vector and
axial-vector masses. The string tension is unob-
servably small in this phase.

e In the high-# phase, all screening masses and the
pseudoscalar decay constant f, fall towards zero as
mg — 07, until the correlation length £ (= 1/m.)
approaches L, the length of the lattice in a direction
transverse to the direction in which the correlator
is measured. Then ¢ plateaus at a value propor-
tional to L. This behavior superficially resembles
the usual finite-size scaling for a critical system in
finite volume, where 1/L plays the role of a relevant
perturbation [39]. (This behavior was exploited in
Ref. [17].)

While the two phases appear for both SF boundary
conditions and for the usual thermal [i.e., (anti-)periodic
temporal] boundary conditions, there are important dif-
ferences between the two cases. For thermal boundary
conditions (BC) the Polyakov loop (in the fundamental
representation) can be used as usual to distinguish be-
tween the two phases. In the strong-coupling phase it
is near zero, real and slightly negative. (It will be re-
called that the fermion action with thermal BC breaks
the global Z(3) symmetry of the gauge action.) In the
weak-coupling phase the Polyakov loop P orders along
one of the Z(3) center elements. The state with (P) real
and positive is the stable one, while the states which
order along the other directions, (P) ~ exp(%2wi/3),
are metastable.? This allows the characterization of
the phase transition as a finite-temperature confinement
transition, as far as is possible in a theory with dynamical
fermions.

With SF boundary conditions, on the other hand,
the fermion action does not break the Z(3) center
symmetry—the Z(3) symmetry is exact, just as in the
pure gauge theory. The Z(3) symmetry could be spon-
taneously broken; as it turns out, the Z(3) symmetry
remains unbroken on both sides of the first-order phase
boundary, so that (P) = 0 throughout. Of course, a
gauge theory with SFBC has no interpretation as a true
finite-temperature system.

In both cases, the entire phase boundary is strongly
first-order, as seen in discontinuities in the plaquette, in
the AWI quark mass, in the ordering of the Polyakov loop
(for thermal BC), and, most of all, in hysteresis. Simu-
lations initialized in one phase but run at parameters in

2 We observed tunneling among these states on lattices with vol-
ume 8%. See Ref. [19] for a study of the thin-link theory, and
compare [20].
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FIG. 2. Phase diagram with SF boundary conditions. The
curve is kc(0). Symbols show the location of the phase bound-
ary between the strong coupling phase at lower 8 and the weak
coupling phase at higher 3. Diamonds are from 12 x 62 lat-
tices (8 = 4.0-4.2) and 6* lattices (8 = 4.3-4.6) while squares
are from 8 lattices.

the other phase can run for hundreds of molecular dy-
namics time steps without tunneling. We present plots
of the mean plaquette and the AWI quark mass in the
appendix.

We located the phase boundary by performing simu-
lations with mixed starts—one half of the initial gauge
configuration is taken from an equilibrium configuration
at some (0, k) in one phase, while the other half is from
an equilibrium lattice at (4, ') in the other phase. We
then watch the system equilibrate. This can be quite ex-
pensive, as it requires tiny time steps to avoid rejection
of the molecular dynamics trajectory in the HMC algo-
rithm. We have thus only done these tests for lattices of
temporal extent N; = 6 and 8: 6%, 12x 63, and 8* lattices
with SFBC, and 123 x 6 and 123 x 8 lattices with thermal
BC. The location of the phase boundary depends on the
choice of BC as well as on N;. We show the region of the
intersection of the phase boundary with the k. curve for
the various cases in Figs. 2 and 3.

It should not be surprising that the phase boundary
shifts when SFBC are replaced by thermal. For given
Ny, thermal lattices have N, spacelike layers of dynami-
cal links, while SF lattices have only Ny — 1. The smaller
number of dynamical degrees of freedom means that the
SF lattice is effectively at a higher “temperature” than
the thermal lattice at the same (8, k). Indeed, compari-
son of Figs. 2 and 3 shows that the phase boundary for
the SF theory lies below and to the left of that of the ther-
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FIG. 3. Phase diagram with thermal boundary conditions.
The curve is kc(8). Symbols show the location of the phase
boundary. Diamonds are from 123 x 6 volumes while squares
are from 123 x 8 volumes.

mal theory with the same N;. This behavior is familiar
in thermal gauge theories when NV, is varied. We repeat,
however, that the SF theory is not a finite-temperature
theory and that the phase transition in the SF theory is
not a finite-temperature transition.

We performed SF calculations on the k. line, defined
by my = 0. In the weak coupling phase it is quite easy
to find k., and its volume dependence is small. When
0 is less than 31, the gauge coupling where the k. line
meets the first order line, the quark mass is never zero;
it changes sign discontinuously when « crosses the phase
boundary (see the appendix). This means that there is no
massless theory to the left of 3;. The k. curve can, how-
ever, be extended leftward into the strong-coupling phase
by simulating in the metastable state, which is continu-
ously connected to the weak-coupling phase. It is in fact
possible to do long runs in this state without tunneling
out if it. We can calculate m,, which does cross zero and
thus gives us k.; we can also calculate g?(L) and Zp(L).
As we will show, these observables remain very similar to
their values in the region of bare parameter space where
the weak-coupling phase is the true vacuum.

There is another metastable extension of the k. line,
found by following a confining state into the non-
confining phase. We have not explored this because sim-
ulation in confining states is much more difficult.

B. Shift of the phase boundary with lattice size

For k < k. the phase boundary shifts to the right as
N, is increased. For sufficiently small « this is to be ex-
pected since this is the scaling behavior typical of the
finite-temperature transition when the fermions are mas-
sive. It turns out to be true for k > k. as well. Close
to (81, K1), this shift is very small. One interpretation of
the lack of motion of the phase boundary here is that,
close to this point, the transition is a bulk transition,
weakly affected by the finite size of the lattice. The al-
ternative explanation is that (at least for thermal bound-
ary conditions) the transition is still a finite temperature
transition, but that it is moving very slowly.

To appreciate the distinction, we have to make a com-
parison to theory. From asymptotic freedom we expect
the bare coupling gg at a physical finite-temperature
transition to scale with the two-loop formula,

1 by .
= ———+bx+ —log(1l+bigslar)x). (18
galaz)  galar) g( 190(a1) ) (18)

where [see Egs. (1)-(3)] = = log(ai/as)?, b =
by /(1672) ~ 0.027, and by = by /(1672)2 ~ —0.003. For
N; = 6 and 8 the two lattice spacings aj o are (67*)~!
and (87*)7!, respectively, where the transition temper-
ature T* gives the scale. Using Eq. (18) for the shift in
the bare coupling 3 = 6/g3, we would predict A3 ~ 0.08.
In the appendix we show that the true shift near x. is
somewhat smaller than this.

It is instructive to compare this to quenched QCD,
where the deconfinement transition is physical. In that
case its shift, when comparing N; = 6 and Ny = 8
[40, 41], is similarly smaller than perturbation theory
predicts: The observed shift is Ag ~ 0.14, while the two-
loop prediction is 0.24. For sextet QCD, the shortfall in
the observed shift is the same or less.

The size of the shift in §; carries profound implications
for the continuum physics of this gauge theory. If the
first-order transition at (£1,/1) comes to a halt when
L/a is large, then there is no massless continuum limit in
which the theory shows confinement and chiral symmetry
breakdown. This is because the only place where m, =0
is on the k. line, which is entirely in the non-confining
phase. One can take a continuum limit along this line
by tuning 8 — oo, but the infrared physics, for any L/a,
will always be that of a conformal theory with anomalous
dimensions.

In order for the massless continuum theory to display
confinement, then, the point (51, k1) must move towards
large 0 as L/a grows. One would tune § — oo while
keeping 3 < (1(L). This is not enough, however. In
lattice QCD one maintains confinement and my, = 0 at
zero temperature by tuning to k. before taking § — oo
[while maintaining 8 < £1(L)]. This is possible in QCD
if the k. line represents a continuous phase transition
between the confining phase at £ < k. and the Aoki
phase at Kk > k.. In our theory, however, the confining



TABLE II. Schrédinger functional couplings g2 evaluated at
the bare coupling (3, k) for lattice size L.

B Re 92

L = 6a L =8a L =12a L = 16a
5.8 0.12835 1.898(16) 1.936(48) 2.015(28) -
54 0.12920 2.241(27) 2.346(48) 2.360(37) -
50 0.13062 2.770(22) 2.830(53) 2.913(59) -
4.8 0.13173 3.173(51) 3.345(59) 3.324(50) -
4.6 0.13320 3.715(37) 3.827(54) 3.960(79) 4.37(11)
44 0.13510 4.564(50) 4.755(77) 4.81(12) 4.72(12)
4.3 0.13617 5.355(91) 5.33(11) 5.45(20) 6.20(36)

phase ends at the first-order boundary and there is no
place where my = 0 for 5 < ;.

Thus the best one can do at a given L in this scenario is
to minimize m, by tuning the couplings to [61(L), £1(L)]
from below. This is not a massless theory. The massless
theory with confinement can only be recovered in the
continuum limit; this will happen only if the discontinuity
in my at [B1(L), k1(L)] goes to zero as L/a — oo, which
is a possibility but by no means assured.?

The observed dependence of 31 on L/a is related to
our results for the SF beta function (see below). The
derivative df31 /d(log L) defines a beta function. The beta
function we measure in this way is smaller than its two-
loop value near the current value of 3;. Our result for
the SF beta function behaves similarly. We find that it
is smaller than the two-loop beta function, and in fact
we cannot tell whether it actually possesses a zero near
(1. In both cases, a zero in the beta function would
imply conformal IR physics; a near-zero would imply slow
running, and even walking, but confinement in the end.

IV. RUNNING GAUGE COUPLING

Turning now to the SF coupling, we list our results for
g*(L) in Table IT and plot them in Fig. 4. We compare
to the one-loop formula,

1 2b
FEI0) =~ Ton2 ! 5 log L + constant, (19)
)

where b, = 13/3, by plotting Eq. (19) as the dotted line
in the figure. At 6 = 8 we find that the coupling runs
with the slope of the one-loop result, but g2 runs more
slowly at all stronger bare couplings. For each 3, the

3 In fact this is the current state of QCD with Wilson fermions.
The absence of the Aoki phase for large 8 means that there is
no theory with mg = 0 for finite lattice spacing [42]. One hopes
that the minimal value of mg at the boundary of the confining
phase will go to zero in the continuum limit, i.e., on sufficiently
large lattices.
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FIG. 4. SF coupling 1/¢* vs. a/L. The dotted line shows the
expected slope from one-loop running. The data at 8 = 4.3
were taken in the metastable weak-coupling state.

change in the coupling over the widest range of L for
which we have data is never more than about 15 per
cent. This should be compared to the case of QCD with
Ny = 2, where by = 29/3 is more than twice as large
and where in nonperturbative studies the coupling al-
ways runs faster than perturbation theory predicts (see
Ref. [34]). In an ordinary QCD simulation, one wishes
to simulate at bare parameter values where the theory
is weakly interacting at short distance, so that one can
use perturbation theory to match lattice-regulated ma-
trix elements to their continuum-regulated counterparts.
One makes the lattice large enough so that the system
becomes strongly interacting at long distance, so that
the simulation captures the physics of confinement. Sat-
isfying both conditions does not seem to be possible for
sextet QCD.

Note also that there does not seem to be any value
of the bare coupling at which g?(L) clearly decreases as
L/a increases. This means that we cannot argue for the
existence of an IRFP.

From Fig. 4 we derive finite-lattice approximations to
the step-scaling function (SSF), conventionally defined
by comparing g2 measured on two lattices, viz.,

o(u,s) = g*(sL), (20)

where u = ¢g?(L) and s is the scale factor between the
two lattices. Thus o(u,s) — u is the change in the SF
coupling when the lattice IR scale is changed by a factor
of s. For scale factor s = 2 we can compare lattices
with L = 6a and 12a as well as lattices with L = 8a
and 16a; for s = 4/3 we compare L = 6a and 8a and also
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Squares show a comparison of L = 6a — 12a while crosses
are from L = 8a — 16a. The rightmost point in each set was
measured in the metastable state at 3 = 4.3. The curve is the
result of integrating the two-loop perturbative formula. Here
and in other figures where g2 or 1/g2 is the abscissa, hori-
zontal error bars, if not drawn, are smaller than the plotting
symbols.

L = 12a and 16a. We plot uw— o (u, s), which parallels the
usual continuum beta function,* for these scale factors in
Figs. 5 and 6. The curves come from integrating the
two-loop beta function from L to sL [cf. Eq. (18)].

We see in Fig. 5 that the SSF from the L = 6a — 12a
comparison reflects running that is consistently slower
than the integrated two-loop beta function. It is possible
that the rightmost point indicates a fixed point (where
we would have u — o(u) = 0), but the error bar is large;
also this point was measured in a metastable state, so its
interpretation is unclear. As for the L = 8a — 16a SSF,
the most we can say is that it is not inconsistent with
that from the smaller lattices. The SSF for scale factor
s =4/3 (Fig. 6) tells a similar story.

In order to connect to our earlier work [15] on the thin-
link lattice theory (on smaller lattices) we also plot the
discrete beta function (DBF) as defined there,’

B(u,s) = — u, (21)

4 For instance, a negative value for u — o(u, s) means asymptotic
freedom.

5 The definition in Ref. [15] included a factor of K [see Eq. (12)
above] which we drop here.
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FIG. 6. Change in coupling under a scale factor s = 4/3.
Squares show a comparison of L = 6a — 8a while crosses are
from L = 12a — 16a. The rightmost point in each set was
measured in the metastable state at 0 = 4.3. The curve is
the result of integrating the two-loop perturbative formula.

where u = 1/¢g%(L) (Fig. 7.) Again we note that the fat-
link results show running that is slower than two-loop
perturbation theory, but no solid evidence for an IRFP.
In fact they rule out the fixed point found in the thin-link
theory (on smaller lattices) at 1/¢g% ~ 0.5.

The apparent linearity of the data in Fig. 4 suggests
trying to collapse all the DBF’s onto each other by plot-
ting the ratio

B(u, s)

R(u,s) = Tog.s

, (22)
combining data for all available scale factors s on one
graph. R(u,s) gives the beta function for 1/g? when
s — 1in the continuum limit L/a — oo. This is shown in
Fig. 8. While, again, the data show slower running than
the two-loop prediction, the scatter and the error bars
pretty much preclude any ambitious further analysis.

A complete analysis of the data would involve taking
the a/L — 0 limit. In principle, doing this on the weak
coupling side of the phase transition would produce a
result that is free of lattice discretization errors. Fig. 8
shows that the scatter in R(u, s) from different values of
a/L is at least as large as the statistical fluctuations in the
individual points. A fit to R(u, s, L) = Ro(u, s)+C/L, for
example, would just produce noise. We are defeated by
the slow intrinsic running of the coupling. Nonetheless,
we can at least make two plain statements:

e The IRFP observed in Ref. [15] is ruled out.
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TABLE III. Pseudoscalar renormalization factor Zp evalu-
ated at the couplings (8, k.), for the lattice sizes L used in
this study.

B Zp

L =6a L =8a L =12a L = 16a
5.8 0.2696(16) 0.2509(12) 0.2248(18) -
5.4 0.2606(19) 0.2333(14) 0.2102(17) -
5.0 0.2398(19) 0.2318(15) 0.1839(14) -
4.8 0.2246(23) 0.1981(15) 0.1716(10) -
4.6 0.2127(14) 0.1808(16) 0.1518(14) 0.1340(6)
4.4 0.1888(18) 0.1631(16) 0.1311(13) 0.1163(13)
4.3 0.1777(17) 0.1516(17) 0.1247(15) 0.1063(10)

e The SF coupling runs slowly over its observed
range. This slow running permits an easy and un-
ambiguous measurement of the mass anomalous di-
mension as a function of the bare parameters or,
equivalently, of the SF coupling g?. This is the
subject of the next section.

V. MASS ANOMALOUS DIMENSION

After the discussion of the running gauge coupling, our
result for the mass anomalous dimension is more definite:
~Ym is never larger in magnitude than about 0.6. This con-
firms the previous, noisy results of Ref. [17]. It suggests
that, regardless of the existence of a zero of the beta func-
tion, this theory may not furnish a phenomenologically
interesting model of walking technicolor.

We extract the anomalous dimension of ¥1) from the
scaling of Zp [Eq. (14)] between systems rescaled as
L — sL. We define the (continuum) mass step scaling
function [35-38] as

- ZP(SL)
op(u,s) = Zo @) gz(L):u' (23)

It is related to the mass anomalous dimension via
Sdt 9
op(us) =exp| = [ = (g*(0))| . (24)
1

Equation (24) is actually too complicated for our needs.
For any bare coupling 3, the SF coupling g?(L) runs so
slowly that we can replace Eq. (24) by

op(u,s) = s (9%) (25)

Our results for Zp(L) are listed in Table III and dis-
played in Fig. 9. As can be seen in the figure, the
L-dependence of Zp is very close to linear on a log—log
plot at all values of 3. This is a consequence of the slow
running of the coupling constant. The theory is “con-
formal for all practical purposes” over the range of L’s
that are accessible at any single value of 3. The slopes of
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the curves allow us to read off 7, (g?) since the simplified
Eq. (25) implies

log Zp(L) = —7m log L + const. (26)

We thus fit straight lines to the data in Fig. 9, keeping
only the three largest volumes at each 3. The result of
the analysis is shown in Fig. 10, a plot of v,,(g?) versus
the SF coupling g2. We use g?(L = 6a) for each bare
coupling (3; since g?(L) varies so little, this gives a good
first approximation. We compare to the one-loop pertur-
bative expectation, v,, = 6Ca(R)g?/(167%). It can be
seen that the numerical results follow the perturbative
line closely until they deviate downward at the strongest
couplings. The agreement with Ref. [17] is gratifying, as
is the much smaller uncertainty obtained with the present
method.

To study finite-lattice effects we define the lattice ap-
proximation to the step scaling function [cf. Eq. (23)],

Zp(B,sL/a)

X L) =
p(u,s,a/L) Zp(B,L/a) |y21.0)=0

(27)

such that

op(u,s) = lin}JZp(u,s,a/L). (28)
We form the ratios of Eq. (27) from the data in Table III.
The rescaled quantities

_log¥p(u,s,a/L)
log s

Rs(u,s,a/L) = (29)

give v, directly as s — 1 in the continuum limit. They
are shown for two bare couplings, § = 4.4 and 4.6, in
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Fig. 11. At these couplings, we have data for L/a = 6,
8, 12, and 16 and so we can form two combinations each
with s = 2 and s = 4/3. We also plot the analogous
result for the s = 3/2 pair (L = 8a,sL = 12a). While
there does appear to be some cutoff (a/L) dependence,
no possible extrapolation to a/L = 0 can push ~,, much
above 0.6. We follow up this figure with a compilation of
Rx:(u,s,a/L), plotted against u = g?(L) for many pairs
of (L,sL), in Fig. 12.

We can use all the data to derive 7,,(g?) by fitting at
each 3 to the form

log Zp = A(B) — vm(B)log L/a + C(ﬁ)%. (30)

The fit involves three parameters if C' is kept, two if it is
discarded. Again, at any particular value of the bare cou-
pling, the spread of g?(L) is so small as to be irrelevant in
any plots. Table IV and Fig. 13 show the results of two-
parameter (A, y,,) and three parameter (A, v,,, C) fits to
all (three or four) data points at each (3 value. Fitting
all the data at one § value to the three-parameter form
produces results that are basically identical to those ob-
tained if values of Ryx(u,s,a/L) are themselves used to
approximate 7, (g%, a) as above, whereupon v, (g%, a) is
then fit to v,,(g2,0) + C(a/L). The data do not really
allow us to say much, especially when we only have three
L’s per 3 value; nonetheless the figure does confirm that
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Ym never rises above 0.6. Lattice spacing artifacts will
not alter our result.

VI. SUMMARY AND CONCLUSIONS

Our system exhibits two phases, a weak-coupling phase
which is nonconfining and chirally restored, and a strong-
coupling phase which is confining. The AWI quark mass
does not vanish in the confining phase, so we cannot per-
form a Schrodinger functional study there (except in a
metastable state). In the weak coupling phase, we find
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graph, squares label points (L/a = 6,sL/a = 8), octagons
(6,12), diamonds (8,12), bursts (8,16), and crosses, (12,16).
The dashed line is the perturbative prediction.

TABLE IV. The anomalous dimension -+, from two-
parameter fits to the data in Table III, showing the fit range
and x2.

I6] L’s kept Ym X2
5.8 8, 12 0.271(23) 0
6, 8, 12 0.261(14) 0.29
5.4 8, 12 0.257(25) 0
6, 8, 12 0.308(15) 7.12
5.0 8, 12 0.372(25) 0
6, 8, 12 0.382(16) 0.26
4.8 8, 12 0.353(23) 0
6, 8, 12 0.378(15) 2.04
4.6 6, 8, 12 0.432(14) 0.0003
6, 8, 12, 16 0.464(8) 7.3
4.4 6, 8, 12 0.494(21) 2.7
6, 8, 12, 16 0.491(14) 2.7
4.3 6, 8, 12 0.512(20) 0.77
6, 8, 12, 16 0.519(13) 0.98

that the SF coupling runs more slowly than predicted by
two-loop perturbation theory over the entire domain of
couplings accessible to analysis.

The location of the fixed point reported in our ear-
lier paper is not confirmed. The present simulation has
an improved lattice discretization and larger simulation
volumes. We did not observe an IRFP, nor did we rule
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one out.
anywhere.

We did not observe a positive beta function

We studied the first-order phase boundary in some de-
tail. In order to ascertain the relevance of this transition
to continuum physics one has to study its location and
strength on yet larger lattices. Moreover, the location of
this transition almost certainly depends on the particular
choice of bare action. An obvious question is whether one
can devise lattice discretizations that push the transition
to larger values of the SF coupling. Then it is possible
that the extension of the beta function to larger couplings
will reveal a fixed point.

Of other gauge theories similar to ours, the one with
the most similar result is the SU(2) gauge theory with
Ny = 2 fermions in the adjoint representation—a candi-
date for “minimal walking technicolor” (MWT) [38, 43—
49]. Tts SF gauge coupling runs slowly, and evidence for
a zero is ambiguous. It has a small, nearly perturbative
mass anomalous dimension. In these studies also Wilson
fermions were used. There is a first-order transition as
K is varied in strong coupling, but, in contrast to our
results, this line ends in a critical point [44, 45]. The
connection of what is evidently a bulk transition to the
finite-temperature phase transition is unclear. Nonethe-
less, the critical point itself is a sign of interesting struc-
ture along the k. line. The latter is bounded by IR-
repulsive fixed points at zero coupling (asymptotic free-
dom) and at strong coupling (the critical point), which
may indicate that it is in the basin of attraction of an
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IR-attractive fixed point and hence that it constitutes a
conformal phase. We emphasize that, in contrast, our
first-order transition at 8 < (; continues smoothly into
the first-order finite-temperature transition at £ < K
without any sign of a critical point at the intersection
with the k. line.

The other class of slowly running theories is SU(3)
gauge theory with Ny > 3 flavors of light fermions in the
fundamental representation. The earliest study of the
phase diagram using Wilson fermions is that of Iwasaki
et. al [21, 50]. The authors found, for 7 < N; < 16,
that “the massless quark line exists only in the decon-
fined phase.” Recent simulations [51] in strong coupling
for SU(2) and SU(3) gauge groups confirm this picture,
with first order behavior (i.e., no k. where my, = 0) ap-
pearing at Ny = 6 for SU(2) and in the range 6-8 for
SU(3). Simulations with Ny = 10 Wilson fermion fla-
vors [52] also produce a first order transition in strong
coupling.

Kogut and Sinclair [20] have studied the SU(3) gauge
theory with sextet fermions and reached conclusions
rather different from ours. They report the existence of
two finite-temperature transitions, a chiral and a con-
finement transition, at very different bare gauge cou-
plings, implying both dramatic scale separation and non-
conformal physics. That study was done with unim-
proved staggered fermions and the usual square-root pre-
scription. Away from the continuum limit, this prescrip-
tion is known to induce non-localities; equivalently, the
number of quark species is not well defined.® It is impor-
tant to monitor the magnitude of taste violation care-
fully in such calculations. Badly broken taste symmetry
would mean that the theory under study has fewer effec-
tive massless flavors, which would bias the result towards
confinement rather than conformality.

Returning to the present study, we note again that
the slow running of the gauge coupling constant allows
an inexpensive and accurate measurement of the mass
anomalous dimension 7,,. This measurement confirms,
and considerably improves on, the calculation of Ref. [17].
~Ym is small, never greater than 0.6 in the coupling region
where we can measure it.

The small value of v, in this theory presents a chal-
lenge for technicolor phenomenology. Even if sextet QCD
is not phenomenologically viable, however, it is charac-
terized by a coupling constant that evolves very slowly
with scale. Such systems are theoretically interesting in
their own right.
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Appendix: Illustrations of the Strong Coupling
Transition

In this appendix we present data supporting the lo-
cation of the first-order phase transitions kcont(3) for
N; = 6 and 8, as well as determinations of where the
boundaries cross the k.(3) curve. (We denote the cross-
ing points by [61(L), k1 (L)], for L = 6a and 8a.)

First we show data for the AWI quark mass m,
(Fig. 14) and plaquette average (Fig. 15) from simula-
tions with SF boundary conditions. Each curve shows
the variation with x for a given (3, as x is swept across
the phase boundary at K¢ont. The first-order transition
is evident in each curve, as is the fact that the discon-
tinuity nowhere tends to zero: There is no critical point
anywhere.

In Fig. 14 we see that the condition m, = 0 can be used
to define k.(0) for 8 > [1(L), where 4.30 < £1(6) < 4.35
while 4.35 < (1(8) < 4.40. Thus the phase boundary
and the k. curve are distinct for 5 > £1(L), as seen in
Figs. 1 and 2. For 8 < f1(L) we find that m, crosses
zero discontinuously, and thus there is no k. curve here.
(The data shown here refer to equilibrium states only;
the metastable extension of the k. curve to the left of 3;
cannot be seen.)

Since the variation of 81 (L) is of great importance, we
devote some effort to interpolating Kcons(8) to find its
intersection with the k. curve. In Fig. 16 we plot the
difference Keont — ke vS. 3, where k. is determined in
the deconfined phase. (Where this quantity is positive,
the phase boundary lies above the k. curve; the AWI
quark mass in the deconfined phase at the phase bound-
ary is negative, and the m, = 0 point lies in a metastable
phase.) The curves in the figure are quadratic fits. In-
verting them to find 31, the point where the transition
crosses the k. curve, we find 8 = 4.315(8) for N; = 6
(with x? = 5.26/3 dof) and 4.383(10) for N; = 8 (with
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x? = 0.83). The difference is then A = 0.068(13), to
be compared to the prediction of 0.08 from Eq. (18).

These re?u%ts are stable under variation in the number
. T T T T ‘ T T T T ‘ T T T T

1.0

0.0

70'5 1 1 ‘ 1 1 ‘ 1 1 1

L5 | |

1.0

S 0.5

0.0 T E

0.15

FIG. 14. The AWI quark mass m4 from simulations on Ny = 6
(top) and N; = 8 (bottom) lattices. Data collected at the
same ( values are connected by lines. In the top panel,
squares indicate 6% volumes while octagons indicate 12 x 63.
The [ values are, from left to right, § = 4.6, 4.5, 4.4, 4.35,
4.3, 4.2, 4.1, and 4.0. In the bottom panel, all data are from
8% lattices and the /3 values are, from left to right, § = 4.6,
4.5, 4.4, 4.35, 4.3, and 4.2.

of points used in the fit: For example, quadratic fits to
the three points at 8 = 4.3, 4.35 and 4.4 give 4.308(6)
and 4.376(15) for N; = 6, 8, respectively.
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FIG. 15. The plaquette average from the same simulations as
in Fig. 14. Symbols and g values are the same. Data collected
at the same ( values are connected by lines.
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