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We study non-perturbative improvement in SU(3) lattice gauge theory coupled to fermions in the
fundamental and two-index symmetric representations. Our lattice action is defined with hypercubic
smeared links incorporated into the Wilson–clover fermion kernel. Using standard Schrödinger-
functional techniques we estimate the clover coefficient cSW and find that discretization errors are
much smaller than in thin-link theories.
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I. INTRODUCTION

The improvement of a lattice action is meant to reduce
the effects of lattice artifacts and thus to bring calculated
quantities closer to their continuum limits. In our work
on the SU(3) gauge theory with sextet fermions [1–4] we
have adopted normalized hypercubic (nHYP) smearing
[5, 6] in the expectation that it would yield reliable re-
sults on fairly coarse lattices. We found, indeed [3], that
the smeared-link action keeps the critical hopping pa-
rameter κc(β) of the Wilson–clover action much closer to
its continuum value of 1/8 even for strong bare couplings
g2
0 ≡ 6/β. It also pushes a first-order phase transition to-

wards stronger bare couplings, thus allowing calculation
of the running coupling g2

SF in a regime where both g2
0

and g2
SF are quite strong. Moreover, the smeared plaque-

tte averages are much closer to unity than the “thin-link”
plaquettes, a clear sign that the gauge field is being ef-
fectively smoothed.

In this note we show that nHYP improvement extends
to the axial Ward identity (AWI). In a calculation in-
volving Wilson fermions, the AWI is frequently used to
determine κc by demanding that the quark mass m be
zero, a consequence of conservation of the isovector ax-
ial current. One can adjust the improvement coefficient
cSW, which multiplies the clover term in the fermion ac-
tion [7], in order to minimize errors in the AWI itself.
One sign of such errors is the sensitivity of m to the
location where the AWI is measured. Lüscher and col-
laborators [8, 9] proposed a procedure of measuring m at
points of the lattice that are inequivalent because of the
boundary conditions used in the Schrödinger Functional
(SF) method. Demanding that m = 0 at two such points
gives conditions for fixing κc and cSW.

Lüscher et al. [9] applied the AWI criterion to the
quenched SU(3) gauge theory, defining the axial current
using thin links. While cSW = 1 at tree level, they found
numerically that cSW ≃ 1.8 is required for β = 6. Jansen
and Sommer [10] did a similar calculation for QCD with
thin-link Wilson fermions (Nf = 2) and again found that
a large value of cSW − 1 is required. Defining the current
with nHYP-smeared links, Hoffmann, Hasenfratz, and
Schaefer [11] reduced the required cSW in the quenched
theory from 1.55 to 1.05 at β ≃ 6.4. This is dramatic

evidence for the claim that nHYP smearing brings the
theory much closer to the continuum limit.

In this paper we present a calculation in theories with
Nf = 2 dynamical triplet and sextet quarks. For quarks
in the triplet representation, we compare the thin-link
and smeared-link theories and find results as dramatic
as in the quenched theory. We find small violations of
the AWI in the smeared-link sextet theory as well. We
conclude that setting cSW to 1 is adequate when nHYP
smearing is used.

The procedure of keeping cSW = 1 while using smeared
links was advocated for triplet QCD in Ref. [12] and
subsequently tested in large-scale calculations [13, 14].
For a determination of cSW with partial stout smearing,
see [15].

II. DETERMINATION OF cSW

We follow closely the method of Refs. [8–11]. The
O(a)-improved action is [7]

S = SW[U, ψ̄, ψ] + a5cSW

∑

x

ψ̄
i

4
σµνFµνψ, (1)

where SW is the conventional Wilson action comprised of
the plaquette gauge action and the fermion hopping term.
The second term in Eq. (1) is the clover term, wherein
Fµν is the lattice-discretized field strength. The gauge
links in the hopping and clover terms are “fat links,”
defined via nHYP smearing as described in Ref. [5] and
with the same smearing parameters.

On a lattice with L3 × T sites, we impose Dirichlet
boundary conditions on the gauge fields on the temporal
boundaries of the lattice,

Uk(x)
∣∣
x0=0

= expCk, Uk(x)
∣∣
x0=T

= expC′
k, (2)
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with the asymmetric choice1

Ck =
i

6T
diag(−π, 0, π), C′

k =
i

6T
diag(−5π, 2π, 3π).

(3)
The fermion boundary conditions are homogeneous,

P−ψ(t = 0) = P+ψ(t = T ) = 0,

ψ̄(t = 0)P+ = ψ̄(t = T )P− = 0, (4)

with P± = 1
2 (1 ± γ0). The gauge-invariant boundary

fields that can be used as wall sources are

ζ =
∑

x

U0(x, t = 0)P+ψ(x, t = 1) (5)

ζ̄ =
∑

x

ψ̄(x, t = 1)P−U
†
0 (x, t = 0) (6)

ζ′ =
∑

x

U †
0 (x, t = T − 1)P−ψ(x, t = T − 1) (7)

ζ̄′ =
∑

x

ψ̄(x, t = T − 1)P+U0(x, t = T − 1). (8)

(These are the same as those used by [8], but written
in explicit form.) The gauge fields are periodic in the
spatial directions, while the fermion fields satisfy ψ(L) =
eiπ/5ψ(0) [8].

The axial Ward identity

∂µA
µa
imp = 2mP a (9)

gives a definition of the quark mass m. Equation (9)
contains the O(a)-improved axial current,

Aµa
imp = Aµa + cAa∂

µP a. (10)

The pseudoscalar density and the unimproved axial cur-
rent are defined by the local products

P a = ψ̄γ5
τa

2
ψ, Aa

µ = ψ̄γ5γµ
τa

2
ψ. (11)

In practice, one evaluates correlation functions of Eq. (9),

∂µ〈A
µa
imp(x)Ô〉 = 2m〈P a(x)Ô〉, (12)

where Ô is any operator located at non-zero distance
from x. It is convenient [8] to use the pseudoscalar field

made of the boundary operators to define wall sources Ô

and Ô′ at t = 0 and t = T , respectively, viz.,

Ôa = ζ̄γ5
τa

2
ζ, Ô′a = ζ̄′γ5

τa

2
ζ′. (13)

1 Note the appearance of T in Eq. (3). The authors of Refs. [8–11]
use L instead, which means that for the lattice used here our
background field is weaker than theirs.

Thus we define the correlation functions

fP (x0) = −
1

3
〈P a(x0)Ô

a〉 (14)

fA(x0) = −
1

3
〈Aa

0(x0)Ô
a〉, (15)

which depend only on x0 by translation invariance of the
wall sources. The spatial derivatives in Eq. (12) vanish
similarly, whence one obtains an estimate for m,

m(x0) =
∂0fA(x0) + cAa∂

2
0fP (x0)

2fP (x0)
, (16)

where for ∂0 we use a symmetric derivative and ∂2
0 is the

nearest-neighbor second derivative. Using Ô′ we define
analogously

f ′
P (T − x0) = −

1

3
〈P a(x0)Ô

′a〉 (17)

f ′
A(T − x0) = −

1

3
〈Aa

0(x0)Ô
′a〉, (18)

which leads to an alternative estimate m′(x0), defined by
the parallel of Eq. (16) in terms of f ′

P , f
′
A. If the AWI is

respected by the improved action then one would expect
that m and m′ are independent of x0 and equal to each
other.

Equation (16) and its primed counterpart still contain
the unknown coefficient cA. An alternative definition of
the mass eliminates this dependence. If we write Eq. (16)
as

m(x0) = r(x0) + cAs(x0), (19)

and similarly for m′, r′, s′, the alternative is

M(x0, y0) = r(x0) − s(x0)
r(y0) − r′(y0)

s(y0) − s′(y0)
, (20)

which differs from m,m′ in O(a2). We also define the
quantity M ′ by exchanging primed and unprimed vari-
ables in Eq. (20). Then, still following Refs. [9–11], we
define the measure of residual violation of the AWI to be

∆M = M

(
3

4
T,

1

4
T

)
−M ′

(
3

4
T,

1

4
T

)
. (21)

III. NUMERICAL RESULTS

All our calculations were performed on lattices with
L = 8, T = 16. For triplet as well as for sextet quarks
we chose two values of β, in the weak and intermediate
coupling regions. Varying cSW, we calculated ∆M as
defined in Eq. (21). Our results are displayed in Tables I–
IV and in Figs. 1 and 2.

For the fat-link theories, we fixed κ for each β by de-
manding that r(T/2) = 0 at cSW = 1, that is, by setting
to zero the unimproved quark mass. This is an alterna-
tive to requiring, say,M(x0, y0) = 0 for some x0, y0; it fol-
lows on the observation that the second term in Eq. (20)
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β κ cSW a∆M × 104

7.4 0.1255 1 1.3(11)
1.1 −3.2(7)
1.2 −9.3(14)
1.3 −15.5(13)

5.8 0.1267 1 7.2(73)
1.1 −1.1(23)
1.2 −6.6(19)
1.3 −16.4(31)

TABLE I: Results of ∆M calculations on 83
× 16 lattice.

SU(3) gauge theory with Nf = 2 fermions in the fundamental
representation, fat links. 2000 trajectories were run at β = 7.4
for each value of cSW, and 3000 at β = 5.8.

β κ cSW a∆M × 104

7.4 0.1346 1.2156 7.8(21)
0.1334 1.3445 1.4(24)
0.13245 1.4785 −5.4(22)

5.7 0.14133 1.27 39.(15)
0.13786 1.55 8.5(30)
0.13433 1.83 −0.7(41)

TABLE II: ∆M for thin-link fermions in the fundamental
representation, for comparison with Table I. Values of β, κ,
and cSW were chosen as in Ref. [10]. 4000 trajectories were
run at β = 7.4 for each value of cSW, and 18000 at β = 5.7.

is generally small and recognizes the fact that the AWI
(9) should hold for nonzero mass as well. In comparing
to other work we note that the κ-dependence of ∆M has
been seen to be very weak [9, 10]. For the same reason,
we did not vary κ for the fat-link theories as we varied
cSW at given β.

The optimal value c∗SW(β) is determined by demanding
∆M = 0. We do this via linear fits to ∆M(cSW), with
the results shown in Table IV and plotted in the figures.

In the theory with triplet fermions we compare the
fat-link results to ∆M in the thin-link theory, calculated
at values of β, κ, and cSW used by Jansen and Som-
mer [10]. [In this case, κ was shifted with cSW to keep
M(1

2T,
1
4T ) = 0.] It is clear that for cSW ≃ 1 the fat-link

β κ cSW a∆M × 104

8 0.12688 1 −2.1(8)
1.1 0.9(8)
1.2 3.5(10)
1.3 8.8(16)

5.8 0.12835 1 −3.4(15)
1.1 −2.9(19)
1.2 0.9(20)
1.3 6.9(61)

TABLE III: As in Table I, but for fat-link fermions in the sex-
tet representation. 4000 trajectories were run for each β, cSW.
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FIG. 1: Determination of cSW for the fat- and thin-link theo-
ries with triplet quarks, using the ∆M data in Tables I and II.
The curves are linear fits whose slopes and intercepts are given
in Table IV.
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FIG. 2: Data for the fat-link theory with sextet quarks (Ta-
ble III), plotted together with the fat-link triplet data from
Fig. 1. The linear fits shown have the parameters listed in
Table IV. Data points for β = 5.8 have been given slight
horizontal shifts for clarity.

action gives much smaller values of ∆M for both values
of β. The fat-link action also gives c∗SW(β) very close to
unity, even at the stronger coupling β = 5.8, for both the
triplet and the sextet theory.

IV. DISCUSSION

Figs. 1 and 2 and Table IV show that discretization
errors in both fat-link theories are generally small, as re-
flected in the value of ∆M at cSW = 0. In comparing
thin- and fat-link fermions for the triplet theory, we find
that the slope of ∆M vs. cSW is similar but that the non-
perturbatively determined coefficient c∗SW is much closer
to one for the smeared links.
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Theory smearing c∗SW Slope
β = 7.4, triplet thin links 1.37(3) −0.005(1)
β = 7.4, triplet fat links 1.04(1) −0.0057(5)

β = 5.7, triplet thin links 1.78(8) −0.004(2)
β = 5.8, triplet fat links 1.10(3) −0.007(2)

β = 8, sextet fat links 1.07(2) 0.0033(5)
β = 5.8, sextet fat links 1.17(6) 0.002(1)

TABLE IV: Results of fitting ∆M(cSW) to a straight line for
each theory: the value of cSW where ∆M = 0, and the fitted
slope.

Our comparison between thin- and fat-link theories
uses results obtained at (roughly) the same values of the
bare coupling. One could compare instead at points of
similar physics by demanding that the values of β give,
for example, the same string tension. This would consti-
tute a comparison of the different discretizations at equal
lattice spacing. Our results, however, make this elabo-
rate exercise unnecessary. In contrast with the triplet
thin-link results, the fat-link results change very little in
going from β = 7.4 to 5.8. Thus, had we tuned our bare
couplings to the slightly different values needed to repro-
duce the lattice spacings of Ref. [10], there would be no
qualitative change in the conclusions.

Turning to the sextet theory, one might be concerned
by the small slope of ∆M(cSW), which acts to enlarge
the error bar on c∗SW. Is this due to having chosen a
quantity with low sensitivity to cSW? Let us consider
the tree-level value of ∆M , denoted ∆M (0). This quan-
tity sets a scale for AWI violation by the background field
on the finite lattice. It is easily determined numerically,
by calculating the Green functions in Sec. II in the single
gauge configuration that is the classical solution to the
boundary conditions, namely, a constant electric field.
(We set cSW = 1 and κ = 1/8.) In the triplet theory we
obtain a∆M (0) = 0.00025, whereas for the sextet theory,

a∆M (0) = −0.00065. In the sextet theory the fluctu-
ations of the dynamical fields weaken ∆M at cSW = 1
considerably from its tree-level value. The observation
that ∆M(cSW = 1) is small on the scale set by ∆M (0)

means that there is no reason to vary cSW away from 1.
The authors of Refs. [9–11] fixed c∗SW by demanding

∆M = ∆M (0). This is an attempt to determine c∗SW
in infinite volume, by supposing that the finite-volume
corrections to the dynamical ∆M and to the tree-level
∆M (0) are the same. Since this assumption is not yet
supported by any study of volume dependence, we eschew
this procedure in favor of demanding ∆M = 0. In other
words, we determine c∗SW for our volume without making
any statement about the L→ ∞ limit.

The smallness of discretization effects we report for the
fat-link theories is consistent with the reduced discretiza-
tion errors found in other observables in the SU(3)/sextet
theory [3] as well as in the SU(2)/adjoint theory [16].2

This lends support to our decision to stick with the tree-
level value, cSW = 1. Indeed, thanks to asymptotic free-
dom, the continuum limit of a lattice gauge theory with a
given (Dirac-) fermion content is completely determined
once the fermion masses are fixed. Improvement is the
art of reducing discretization errors when the lattice spac-
ing is nonzero. Since it does not change the continuum
limit, improvement is always at one’s discretion, never
mandatory. Our experience is that, thanks to the fat-link
action, using cSW = 1 provides as much improvement as
we need.
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