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We use lattice simulations and the continuous renormalization-group method, based on the gra-
dient flow, to study a candidate theory of composite Higgs and a partially composite top. The
model is an SU(4) gauge theory with four Dirac fermions in each of the fundamental and two-index
antisymmetric representations. We find that the theory has an infrared fixed point at g2 ≃ 15.5
in the gradient flow scheme. The mass anomalous dimension of each representation is large at the
fixed point. On the other hand, the anomalous dimensions of top-partner operators do not exceed
0.5 at the fixed point. This may not be large enough for a phenomenologically successful model of
partial compositeness.

I. INTRODUCTION

A. Background

Compared to the Planck scale, the mass of the Higgs
particle in the Standard Model is unnaturally small. A
popular solution is to suppose that the Higgs is a pseudo
Nambu-Goldstone boson arising from the spontaneous
breaking of a chiral symmetry [1, 2], which in turn is
induced by a novel strong interaction sometimes known
as hypercolor (HC). Since the top quark has a mass on
the same scale, one might similarly suppose that the top
quark is partially composite [3], receiving its mass from
the direct coupling to a hypercolor baryon called the top
partner.

Composite Higgs models have been extensively stud-
ied using effective field theory techniques (for reviews,
see Refs. [4–6]). It is important, however, to seek out re-
alizations of this paradigm as a concrete, asymptotically
free theory such as hypercolor. A list of candidate theo-
ries satisfying a number of desirable properties was com-
piled by Ferretti and Karateev [7–10] (see also Ref. [11]).
As a stand-alone theory—before coupling to Standard
Model fields—each model in the Ferretti–Karateev list is
a vector-like gauge theory with fermions in two differ-
ent representations of the gauge group. The top partner
is a chimera: a three-fermion bound state made out of
fermions of both representations.

Without additional interaction terms, the hyper-
color gauge interaction cannot generate Standard Model
fermion masses, nor can it induce electro-weak symmetry
breaking. The coupling of the top quark to its chimera
partner must come from four-fermion interactions, whose
origin lies in a sector, known as extended hypercolor
(EHC), with a still higher energy scale. Such interac-
tions at the HC scale are naively suppressed by a factor
Λ2
HC/Λ

2
EHC , where ΛHC is the scale of the hypercolor

theory, while ΛEHC ≫ ΛHC is the scale of the EHC the-
ory.

In the absence of a concrete realization of extended

hypercolor in the literature,1 it must be assumed that,
generically, the four-fermion interactions induced by the
EHC theory can give rise to unwanted flavor violations.
In order to respect experimental bounds on flavor viola-
tion, Λ2

HC/Λ
2
EHC must be small. In order to obtain a

realistic top mass, however, the effect of the suppression
factor on the top-partner mixing term must be reduced.
To this end, two conditions must be satisfied. First,
some of the four-fermion operators responsible for partial
compositeness must have a large anomalous dimension.
Schematically, these operators have the form q̄B, where q
is a Standard Model fermion field, and B is a hypercolor-
singlet chimera operator. Therefore, one requires the ex-
istence of chimera operators B with large anomalous di-
mensions within the hypercolor theory. The second re-
quirement is that the hypercolor theory itself must be
nearly conformal, allowing the large chimera anomalous
dimensions to persist over many scales—ideally, all the
way from the EHC scale down to the hypercolor scale.2

The hope, then, is that successful composite-Higgs
models will be found near the sill of the conformal win-
dow. Theories just below the sill are obvious candidates,
nearly conformal but ultimately confining and chirally
broken. Theories slightly above the sill, which feature an
infrared fixed point when all the fermions are massless,
are also eligible, as one can induce confinement by giving
large masses to a small subset of the fermions [16–19].
Figure 1 shows analytic estimates for the location of

the conformal sill for SU(4) gauge theory in the plane
spanned by the number of Dirac fermions in the fun-
damental 4 representation and the number of Majorana
fermions in the two-index antisymmetric 6 representa-
tion, which is real.3 Also shown in the figure are two of
the Ferretti–Karateev models that belong to this plane:

1 See, however, Ref. [12]
2 Since the days of walking technicolor [13, 14], it has been ex-
pected that large anomalous dimensions would appear near the
sill of the conformal window. See also Ref. [15].

3 The dashed green line is the sill of the conformal window ac-
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FIG. 1. Estimates for the location of the conformal win-
dow of the SU(4) gauge theory with Nf Dirac fermions in
the fundamental representation and nf Majorana fermions in
the sextet representation. The uppermost line is the limit of
asymptotic freedom, where the 1-loop beta function changes
sign. The other lines are various analytical estimates of the sill
of the conformal window (see text). Blue circle: M6 model;
red diamond: M11 model; black square: 2+2 model; open
circle: 4+4 model, the subject of this paper. Only the lowest
two lines are consistent with the IR fixed point that we find
for the 4+4 model.

the so-called M6 and M11 models [7, 10]. The “2+2
model,” which contains two Dirac fermions in each of the
4 and 6 representations,4 has been studied extensively
using lattice techniques. While QCD-like, and hence far
from the conformal sill, the 2+2 model served as a use-
ful laboratory, providing the first example studied of an
asymptotically free gauge theory with two representa-
tions, in particular one that produces chimera baryons
[20–27].5

In this paper we move on to the “4+4 model,” where
we increase the number of Dirac fermions in each repre-
sentation from two to four. The 4+4 model has a num-
ber of desirable features. First, the M6 and M11 models
can both be embedded into the 4+4 model, and can be
reached by giving a subset of the fermions a (Dirac or
Majorana) mass. In addition, as can be seen in the fig-
ure, the 4+4 model is much more likely to be close to, or
even inside, the conformal window.

cording to the 2-loop beta function, where it first develops an
IR fixed point; the dashed red line is from the “all-orders” beta
function; the dashed blue line reflects the “critical condition” of
Ref. [33]; the dashed black line stems from long-standing analy-
sis of Schwinger–Dyson equations—for all of these, see Ref. [33],
from which this figure was adapted, and references therein.

4 The two Dirac fermions in the real 6 representation are equivalent
to four Majorana fermions.

5 For lattice studies of a composite Higgs model based on the Sp(4)
gauge group, see Refs. [28–32].
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FIG. 2. The β function obtained with five different lattice
gradient flows. All flows are the same in the continuum limit;
their regions of validity are different, though overlapping. For
details see Sec. II.

B. Method and summary of results

We extract the beta function and anomalous dimen-
sions using a continuous renormalization group (RG)
method [34, 35].6 The length scale for this RG is

√
t,

where t is the parameter of a gradient flow (GF) gen-
erated by integrating a diffusion equation for the gauge
field [39]. The GF running coupling is defined as [40]

g2 =
N

C(t;L, T )
t2 ⟨E(t)⟩ . (1.1)

Here the energy density at scale
√
t is E = 1

4G
a
µνG

a
µν ,

where Ga
µν is the flowed gauge field strength. N is a

numerical factor which depends on the gauge group, and
C(t;L, T ) is a correction for the finite dimensions L, T
of the volume being simulated (see below). Viewing the
gradient flow as an RG transformation, the beta function
is

β(g2) = −t ∂g
2

∂t
. (1.2)

The extension of the GF technique to fermions was de-
veloped in Ref. [41], while the use of the continuous RG
for obtaining anomalous dimensions of fermion operators
was introduced in Ref. [42].
Our main findings are the beta function (Fig. 2),

which shows an IR fixed point;7 the mass anomalous
dimensions (Fig. 3); and the anomalous dimensions of

6 for a slightly different approach see Refs. [36–38].
7 In comparing to the 2-loop curve, recall that it also crosses the
abscissa, giving an IR-stable fixed point, but at a strong coupling
well outside the range of the figure.



3

0 5 10 15 20

g2
0.0

0.2

0.4

0.6

0.8

1.0

1.2
(4

)
m

1-loop PT
continuum limit Wil
continuum limit C13

0 5 10 15 20

g2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(6
)

m

1-loop PT
continuum limit Wil
continuum limit C13

FIG. 3. Anomalous dimensions of the two mass operators.
Top: fundamental representation. Bottom: sextet represen-
tation. See Sec. III for details.

the chimera operators with the lowest mass dimension,
namely, three-fermion operators with no derivatives. The
largest chimera anomalous dimension is shown in Fig. 4,
while the other two are shown in Fig. 14. The IR fixed
point places the model inside the conformal window.
Moreover, the anomalous dimensions of the mass opera-
tors are large, for both representations, at the fixed point.
Unfortunately, the anomalous dimensions of all chimera
operators are fairly small at the fixed point, making it
unlikely that the model can successfully account for a
partially composite top quark.

We obtain the flowed expectation values in Eq. (1.1) in
the presence of a lattice cutoff, generating ensembles of
the gauge field with numerical simulations. We present
our lattice methods, including the calculation of the beta
function and its extrapolation to the continuum limit, in
Sec. II. The calculation of anomalous dimensions is the
subject of Sec. III. We offer our conclusions in Sec. IV.
Further technical details of the lattice calculation are
given in the appendix.
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FIG. 4. The largest chimera anomalous dimension, γs
ch.

The other two chimera anomalous dimensions are smaller (see
Fig. 14).

II. GAUGE FLOW AND THE BETA
FUNCTION

A. Lattice strategy

The lattice action, our simulation algorithm, and the
ensembles we generated are described in the appendix.
We use Wilson-clover fermions and tune the bare masses
such that the fermions of both representations are essen-
tially massless.

A new ingredient in the lattice action is a set of Pauli–
Villars fields [43]. Without these, the presence of many
fermion flavors, especially with smearing-improved gauge
connections, generates a large screening effect in the ef-
fective action for the gauge field. In order to obtain a
strong renormalized coupling, one would be pushed to-
wards large bare coupling g20 = Nc/β. This, in turn,
would cause large ultraviolet fluctuations. As a conse-
quence, these systems often encounter phase transitions
or other discontinuities, lattice artifacts that prevent the
approach to the desired renormalized coupling, especially
when the fermions are light. Our 4+4 system exhibited
such a discontinuity when the original lattice action was
used. The addition of Pauli–Villars fields weakens the
induced term and allows us to reach much further into
strong renormalized coupling.

As mentioned in the introduction, we use the contin-
uous RG technique to determine the beta function. The
4+4 model that we simulate is a massless, asymptotically
free lattice theory. The gradient flow acts as a transfor-
mation in coupling space: as the flow time t is increased,
irrelevant operators die out and the flow converges to-
wards the renormalized trajectory (RT) emerging from
the gaussian fixed point in the ultraviolet. Our task will
be to ensure that, given a specific flow at a specific renor-
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Flow Sym C43 Wil C23 C13

cp 5/3 4/3 1 2/3 1/3

cr −1/12 −1/24 0 1/24 1/12

TABLE 1. Lattice gradient flows. The first line gives the
flow’s name used in this paper. “Sym” and “Wil” are the
well-known Symanzik and Wilson flows. cp and cr are the
coefficients of the plaquette and rectangle terms in the lattice
action that generates each flow.

malized coupling, the flow has reached close enough to
the RT that any remaining discretization effects can be
removed by a simple extrapolation.

We begin by applying a gradient flow to the gauge
field of every lattice configuration. In principle, extract-
ing continuum results requires first taking the infinite-
volume limit and then the continuum limit of zero lattice
spacing a; the latter limit involves taking the dimension-
less lattice flow time t/a2 → ∞. Eschewing a formal
infinite-volume limit, we focus on the continuum limit,
which we extract from eight ensembles on a lattice vol-
ume of 243×48 sites. The bare couplings of these ensem-
bles were selected to range from weak to strong coupling.
We have also generated ensembles on volume 283×56 for
two of the bare couplings; we use these to estimate finite-
volume effects. By using lattice flow time t/a2 ≤ 3.4 we
have limited the finite volume effects to no more than a
few percent.

B. Gauge flows

The continuum GF equation takes the form [39]

∂Bµ

∂t
= DνGνµ , (2.1)

where Bµ is the flowed gauge field, and Gνµ the associ-
ated field strength. The initial condition of the flow is
the dynamical gauge field, viz.,

Bµ

∣∣
t=0

= Aµ . (2.2)

The right-hand side of Eq. (2.1) is just −∂Sg/∂Bµ(x),
where Sg = 1

4G
a
µνG

a
µν is the standard continuum gauge

action in terms of the flowed field.
On the lattice, the continuum gauge field is replaced

by the link variables Uµ(x). Each saved lattice configu-
ration provides initial values for the gradient flow. We
also need a discrete version of ∂Sg/∂Bµ(x) for the right-
hand side of the flow equation (see Ref. [39]). In this
paper we apply five different gradient flows, each derived
from a different discretization of the continuum action
Sg. The lattice gauge action which generates each flow is
a linear combination of the plaquette (1×1 Wilson loop)
and rectangle (1×2 Wilson loop) terms, with coefficients
shown in Table 1. For proper normalization in the weak-
coupling limit, the plaquette and rectangle coefficients cp

and cr are constrained by

cp + 8cr = 1 . (2.3)

As discussed in detail below, we have found that increas-
ing cp from 1 gives rise to flows with relatively small
discretization effects at weak bare coupling, while cp < 1
works well at strong bare coupling. In particular, we
found the range of validity of the Symanzik flow to be
limited to the weak coupling regime. We did not pur-
sue the fully Symanzik-improved Zeuthen flow [44], as it
is unlikely that further perturbative improvement would
significantly change this conclusion.
Returning to Eq. (1.1) which defines the gradient flow

coupling, the numerical constant here is

N =
128π2

3(N2
c − 1)

≃ 28.4 , (2.4)

for Nc = 4. The finite-volume correction term
C(t;L, T ) = 1 + δ corrects for the zero modes of the
gauge fields [40]. For volume L3 × T we have8

δ(t;L, T ) = −π
2(8t)2

L3T
+ ϑ

(
t/L2

)3
ϑ
(
t/T 2

)
. (2.5)

The correction |δ| is smaller than 0.005 for all our vol-
umes in the useful ranges of t.
In addition, one has to select a discretization of the

“energy” E = Sg, which is used to define the coupling in
Eq. (1.1). We use three different discretizations, two of
which correspond to the Symanzik (S) and Wilson (W)
actions of Table 1. A third discretization is provided by
the “clover” (C) operator. As explained below, we have
found that the S operator gives the smoothest approach
to the continuum limit, and so we will focus on results
obtained using this operator.

C. Example flows and infinite volume limit

We generated each flow by numerically integrating a
lattice version of the flow equation (2.1) in steps of dt =
0.01. The energy E of the flowed gauge field was recorded
for the three operators S, W, and C, at intervals of ∆t =
0.1. The derivative in the bare beta function (1.2) was
estimated with a five-point difference formula.
We show the raw flows for all eight of our 243 × 48

ensembles in Fig. 5 for Wilson flow and in Fig. 6 for
C13 flow.9 Both present the S operator. In each figure,
the top panel shows the gradient flow coupling g2 as a
function of the lattice flow time t/a2. The bottom panel

8 This expression is not given in Ref. [40] but was shared privately
by D. Nogradi. We thank him for his assistance.

9 The C13 flow is equivalent to the AFLOW introduced in Ref. [45].
The motivation there is quite different from ours.
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FIG. 5. Results for the S operator measured in the Wilson
flow. Top: Gradient flow coupling g2 as a function of lattice
flow time t/a2. Bottom: β(g2) vs. g2 at flow times 2.4 ≤
t/a2 ≤ 3.2. Each open circle indicates the smallest flow time
shown, t/a2 = 2.4. Error bars in the top panel of this figure,
as well as in Figs. 6 and 7, are too small to be visible.

shows the resulting raw beta function as a function of g2

for a fixed interval of flow time 2.4 ≤ t/a2 ≤ 3.2.

A comparison of the two figures reveals that the C13
flow reaches further into strong coupling than the Wilson
flow: with the S operator, the former reaches g2 ≃ 22
while the latter reaches only g2 ≃ 18. There are sim-
ilar distinctions among the three operators. For C13
flow, and within the above t/a2 interval, the C opera-
tor reaches g2 ≃ 18 at our strongest bare coupling and
the W operator reaches g2 ≃ 20, whereas the S opera-
tor reaches g2 ≃ 22 as just noted. In the lower panel of
Fig. 6, we see that the beta function becomes positive
for the largest couplings. Reaching larger values of the
gradient flow coupling has direct bearing on the ability
to confirm the existence of an IR fixed point.

Figures 5 and 6 show raw data—before extrapolation
to the continuum. In Sec. IID and Sec. II E we will show
that cutoff effects at strong coupling remain small for

0 1 2 3 4 5 6 7

t/a2
0

5

10

15

20

25

30

35

g2

C13 S op

= 13.0
= 12.0
= 11.5
= 11.0
= 10.8
= 10.6
= 10.5
= 10.4

0 5 10 15 20 25 30 35

g2

1.0

0.5

0.0

0.5

1.0

1.5

(g
2 )

C13 S op

= 13.0
= 12.0
= 11.5
= 11.0
= 10.8
= 10.6
= 10.5
= 10.4

FIG. 6. Similar to Fig. 5, for the S operator measured in
C13 flow.

the S operator, and almost as small for the W operator.
Moreover, the strongest attainable renormalized coupling
of the C13 flow remains much larger than that of the
Wilson flow in the continuum limit.

In Fig. 7 we examine the effect of increasing the lattice
volume. We have generated two 283 × 56 ensembles—at
β = 11 which is a weak (bare) coupling and at β = 10.5
which is a strong coupling. In the top panel, we show the
flows at these two bare couplings for the two volumes,
again using C13 flow and the S operator. The change
in g2 and in its derivative due to changing the lattice
volume is evidently small. The bottom panel shows the
effect on the raw beta function. For both bare couplings,
an increase in L/a from 24 to 28 has the effect of shifting
g2 upward by about 0.1, leaving the β function other-
wise unchanged. We expect the extrapolation to infinite
volume to be linear in (a/L)4. It can be easily checked
that the increase L/a = 24 → 28 takes (a/L)4 halfway
to the limit. Hence, the expected change in β(g2) is a
horizontal shift by twice the amount seen in Fig. 7, with
no qualitative change in the overall shape, including the
existence of a fixed point. In the rest of this section we
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FIG. 7. Volume comparison for the S operator measured in
C13 flow in the β = 11.0 and 10.5 ensembles. The volumes
are 243 × 48 and 283 × 56. Top: Gradient flow coupling g2 as
a function of the lattice flow time t/a2. Bottom: β(g2) vs. g2

at flow times 2.4 ≤ t/a2 ≤ 3.2.

concentrate on our eight 243 × 48 ensembles.

D. Interpolation

In order to determine the continuum limit of β(g2) we
will extrapolate t/a2 → ∞ at fixed g2. In a theory with
a rapidly running coupling the graph of the raw data for
β(g2), Fig. 5 or 6, would yield several ensembles that give
different values for β(g2) at any fixed coupling g2 [34, 36].
We would then read off the corresponding flow time t/a2

and β(g2) for each ensemble, and take t/a2 → ∞.
Since our theory runs slowly, each ensemble covers only

a small range of g2 and hence we have no overlaps be-
tween ensembles at any value of the coupling. There-
fore, we have to interpolate β(g2) vs. g2 at fixed flow
time—see Fig. 8. For a given flow time t/a2, we iden-
tify the (g2, β(g2)) pair on each ensemble. This gives us
eight data points on each fixed-t curve. To make verti-

cal slices in β(g2), we interpolate between ensembles at
each fixed t. In weak coupling, β(g2) ∝ g4, and hence we
use a polynomial interpolation even in strong coupling,
β(g2)/g4 = c0+ c1g

2+ c2g
4+ · · · , as detailed below. The

curves plotted in Fig. 8 show the interpolations for the
Wilson, C23 and C13 flows, using the S operator for the
coupling.
Before performing each interpolation, we have to de-

cide if we can use all eight data points. As can be seen
in the figure, the C13 and C23 flows show rapid change
with t/a2 at the weakest bare couplings (the leftmost
data points). We interpret this as indication that these
flows require larger flow times in the weak coupling re-
gion to reach the vicinity of the RT. Interpolations with
cubic, or even quartic, polynomials have poor p-values
if we include all 8 data points. Dropping the left-most
data point β = 13.0 is sufficient to raise the p-value
above 10% if we use a cubic interpolating polynomial
for β(g2)/g4. Even though Wilson flow shows smaller
cutoff effects at β = 13.0, for consistency we include only
the seven ensembles at β < 13.0 and use a cubic inter-
polation for both the Wilson and C23 flows. Moreover,
for the C13 flow, it can be seen in the bottom panel of
Fig. 8 that the β = 12.0 point also shows large cutoff ef-
fects for the Symanzik operator. Hence, for this flow we
discard β = 12 from the interpolation as well, and use
a quadratic interpolating polynomial to keep the same
number of degrees of freedom in the interpolation as for
the other flows.
The curves plotted in Fig. 8 connect only the data

points that were included in the fits. As usual in inter-
polating data, in later stages of the analysis we will not
use the interpolating curves outside the range of the data
points that they connect.
The Symanzik and C43 flows (not shown in the figure)

follow an opposite trend, exhibiting increasing cutoff ef-
fects in strong coupling. For those flows we drop the data
point at the strongest bare coupling, β = 10.4. Again,
we use a cubic interpolating polynomial.

E. Taking the continuum limit

We now turn to the final stage of our analysis, taking
the continuum limit by extrapolating t/a2 → ∞. Having
constructed curves for β(g2) for a selection of t values,
we now consider the β surface as a set of curves β(a2/t)
for a selection of g2 values. At any given physical cou-
pling g2, the beta functions extracted from our different
discretizations (S, W, C) must agree in the continuum
limit; we will use this requirement to impose cuts on the
range of g2 where each flow can be trusted.

We show an example of the extrapolation process in
Fig. 9, which shows the extrapolation of β(g2) at g2 =
12.0 for the C13 flow, for all three operators (S, W, C).
The difference between the beta functions at finite lat-
tice flow time t/a2 obtained for any two operators should
approach zero as (a2/t)ζ , where ζ is the scaling exponent
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FIG. 8. Interpolation of β(g2)/g4 vs. g2 for selected values of t/a2 in Wilson flow (top left), C23 flow (top right), and C13
flow (bottom). The coupling g2 is defined by the S operator, measured in the eight 243 × 48 ensembles. In each plot, moving
from left to right corresponds to stronger GF and bare couplings: the leftmost points come from β = 13 and the rightmost
from β = 10.4. The curves connect only the points that were included in the interpolation.

of the leading irrelevant operator. At weak coupling one
expects ζ = 1+O(g2), but in general the dependence on
g2 is not known.10 Our data do not allow us to resolve
any statistically significant deviations from ζ = 1, and so
we will assume that all cutoff effects scale linearly with
a2/t.

In Fig. 9 the data points plotted with open symbols are
not included in the extrapolation. The smallest accept-
able flow time depends on g2—as well as, more generally,
on the flow—reflecting how close we are to the RT. We
also limit the maximum flow time to suppress finite vol-
ume effects. The remaining data give adequate linear
extrapolations. We denote the extrapolated values by
βS, βW, βC.

We determine the error of each extrapolation with a
bootstrap analysis. The closeness of the three extrapo-
lated values indicates that the three operators give con-

10 A. Hasenfratz and C. T. Peterson, in progress.

sistent results in this case. We will return to the precise
condition for consistency shortly.
In Fig. 10 we show a compilation of continuum ex-

trapolations. The three rows of the figure show extrap-
olations at g2 = 10.0, 14.0, and 17.0, while the three
columns correspond, from left to right, to Wilson, C23,
and C13 flows. Each panel depicts the extrapolation pro-
cess for all three operators. A general feature revealed in
the figure is that the slope of the extrapolation is always
smallest for the S operator, with the W operator coming
next. The C operator is last, having the largest slopes.
This signals that discretization effects are smallest for the
S operator. Combined with the other advantages of the
S operator we have already discussed in Sec. II C, this
naturally leads to the choice of the S operator for our
main result.
It is evident in Fig. 10 that there are cases where the

extrapolated values of the three operators are consistent
with each other, whereas for other cases they are not (for
example, the panel in lower left). While these plots give a
general idea of the agreement of the extrapolations, they
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FIG. 9. Extrapolations a2/t → 0 of β(g2) at g2 = 12.0. Data
are (top to bottom) the S (green), W (red), and C (purple)
operators measured in the C13 flow. Data plotted with open
symbols have been dropped from the extrapolations.

cannot directly be used to determine the consistency of
the extrapolations. The reason is that data for the three
operators are highly correlated. In order to correctly as-
sess the level of agreement between any two extrapola-
tions, their correlations must be taken into account.

We therefore base the criteria for consistency on the
plots in Fig. 11, which include the effects of correlations.
Since we will be basing our main result on the S opera-
tor, we plot red curves in each frame to represent ±

√
2σS,

where σS is the error in βS. The two bands in each frame
are the ±1σ bands for the correlated differences βS−βW
and βS − βC, which we also determine in the bootstrap
analysis. We comment that these two bands are much
narrower than the span between the red curves; this re-
flects the strong correlations among the three operators.

The range of g2 values where a given flow can be
trusted is determined by the severity of discretization
effects. As we have seen (e.g., in Figs. 9 and 10), the
S operator shows the smallest discretization effects, with
the W operator coming next. Hence we will determine
this range by requiring consistency between βS and βW.
Table 2 shows the range of g2 in which each set of flow
data satisfies two constraints: (1) g2 lies within the
range of interpolation in Fig. 8, resulting in an interval
[g2min1, g

2
max1]; (2) the operators S and W give consistent

values for the extrapolation to a2/t = 0, resulting in the
smaller interval [g2min2, g

2
max2]. The precise condition for

consistency is that the mean value of βS − βW, repre-
sented by the green curves in Fig. 11, lies between the
±
√
2σS curves.

The beta function resulting from this analysis is the
final result of this section. It is displayed in Fig. 2, and
replicated in the top panel of Fig. 12. There is a nice
agreement between the predictions of the different flows
in their overlapping ranges. On the weak-coupling side,

our result connects smoothly to perturbation theory. At
strong coupling, we find an IR fixed point at g2 some-
where between 15.5 and 16.
For completeness, we also examine the consequences of

requiring consistency of all three operators. In this case,
both of the differences βS−βW and βS−βC are required to
lie between the ±

√
2σS curves, see Table 3. This results

in a smaller range of validity for each flow, shown in the
bottom panel of Fig. 12. It can be seen that now there is
a gap between the coverage of the C43 and Wilson flows;
a set of flows with cp and cr chosen between those of C43
and Wilson is needed to fill that gap. We note that for
C13 flow, the differences βS −βW and βS −βC cross zero
in the vicinity of the IR fixed point (bottom right panel of
Fig. 11). In other words, the differences among the beta
functions extracted from the extrapolations of the three
operators are minimal near the fixed point. This lends
further credibility to our determination of its existence
and location.
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FIG. 10. Extrapolations a2/t → 0 of β(g2) for g2 = 10.0 (top), 14.0 (middle), and 17.0 (bottom), which sample weak,
intermediate, and strong couplings. At each value of g2 we plot extrapolations for data from Wilson flow (left), C23 flow
(center), and C13 flow (right). All data points come from flow times that belong to the interval 2.4 ≤ t/a2 ≤ 3.2. Color codes
and symbols are the same as in Fig. 9.



10

4 6 8 10 12 14

g2
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Sym flowS C

S W

± 2 S

4 6 8 10 12 14

g2
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

C43 flowS C

S W

± 2 S

6 8 10 12 14 16

g2
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Wil flowS C

S W

± 2 S

8 10 12 14 16 18

g2
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

C23 flowS C

S W

± 2 S

10 12 14 16 18 20

g2
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

C13 flowS C

S W

± 2 S

FIG. 11. Comparing the differences βS − βW (green) and βS − βC (blue) with the standard deviation σS of the S operator,
at all physical couplings g2 for each of the five flows. We require that the differences lie within the curves ±

√
2σS (red). The

bounds of validity g2min2 and g2max2 in Tables 2 and 3 have been set accordingly.



11

Flow g2min1 g2max1 g2min2 g2max2

Sym 3.7 13.6 3.7 4.0

C43 3.7 14.4 3.7 11.0

Wil 6.6 17.3 6.6 12.5

C23 6.8 18.9 6.8 14.0

C13 9.8 21.3 9.8 17.5

TABLE 2. Ranges of g2 in which each flow is included in
the final result for β(g2). g2min1 and g2max1 result from limiting
the ensembles included in the interpolations, while g2min2 and
g2max2 come from further demanding consistency between the
continuum extrapolations βS and βW (see Fig. 11). Since the
second requirement does not constrain the g2 range any fur-
ther on the weak-coupling side, the g2min1 and g2min2 columns
are identical. We quote g2max2 with a resolution of 0.5. The
last two columns are the ranges reflected in the upper panel
of Fig. 12 (and in Fig. 2).

Flow g2min1 g2max1 g2min2 g2max2

Sym 3.7 13.6 (none) (none)

C43 3.7 14.4 3.7 4.5

Wil 6.6 17.3 6.6 11.5

C23 6.8 18.9 6.8 13.5

C13 9.8 21.3 11.5 17.5

TABLE 3. Same as Table 2, but here the determination of
g2min2 and g2max2 is based on consistency of βS, βW, and βC,
with results reflected in the lower panel of Fig. 12.
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FIG. 12. The β function obtained with five different GF
transformations. Both panels show the beta function derived
from the S operator, but the ranges in g2 allowed for each flow
differ between them. For the top panel (identical to Fig. 2),
only consistency between the S and W operators is required
(Table 2). For the bottom panel, all three operators are re-
quired to be consistent (Table 3). In the bottom panel, there
is a large gap between the g2 regions of the C43 and Wilson
flows—to bridge this gap a finer sequence of flows is needed.
Also, there is no region of validity for the Symanzik flow, and
thus it is not shown.
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III. ANOMALOUS DIMENSIONS

In this section we compute the mass anomalous dimen-
sions for the fundamental and sextet representations, as
well as the anomalous dimensions of top-partner chimera
operators, as functions of the renormalized coupling g2.
The anomalous dimensions in the infrared are then given
by their values at the fixed point at g2 ≃ 15.5.
The gradient flow equation for a fermion field in the

continuum is [41]

∂χ

∂t
= ∆(t)χ , (3.1)

where χ is the flowed fermion field. ∆ is the covariant
laplacian, constructed from the flowed gauge field at the
same t. Similarly to the gauge field, the initial condition
is

χ(0)
∣∣
t=0

= ψ , (3.2)

where ψ is the dynamical fermion field.
There is a technical issue in the application of the con-

tinuous RG method to operators made out of fermion
fields, described in Ref. [42]. Consider a two-point func-
tion of a flowed mesonic density X ′ with an unflowed
source X,

⟨X(0)X ′(t)⟩ ∼ t−(d+η+γ)/2 . (3.3)

The scaling formula follows from the fact that here X(0)
is kept at t = 0, while X ′(t) is constructed from the
flowed fermion fields at time t. The exponent reflects
the classical dimension of the fermion bilinear, d = 3;
the anomalous dimension of the elementary fermion field,
η/2; and the anomalous dimension of the meson operator,
γ. The reason for the appearance of η is that the gradi-
ent flow, unlike a blocking RG transformation, does not
preserve the normalization of the fermion kinetic term.

One way to eliminate η is to divide ⟨X(0)X ′(t)⟩ by
the two-point function of a conserved current, whose
anomalous dimension vanishes. We use the vector cur-
rent, which scales according to (suppressing the vector
index)

⟨V (0)V ′(t)⟩ ∼ t−(d+η)/2 . (3.4)

Defining the ratio

R(t) =
⟨X(0)X ′(t)⟩
⟨V (0)V ′(t)⟩

, (3.5)

we have

R(t) ∼ t−γ/2 . (3.6)

Now γ can be extracted from the logarithmic derivative,

γ = −2
t

R

∂R

∂t
. (3.7)
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FIG. 13. Examples of x4 plateaus. Both panels show raw
results for the mass anomalous dimension at β = 10.8. Top:
C13 flow, fundamental representation. Bottom: Wilson flow,
sextet representation.

We choose the operators X and X ′ to lie in definite 3-
volumes, separated by euclidean time x4. We require√
8t ≪ x4, meaning that the euclidean time separation

must be large compared to the smearing of the operators
by the flow. Once this condition is satisfied, the ratio
R(t) and the corresponding exponent γ are expected to
be independent of x4.

A. Mass anomalous dimensions

In the lattice calculation, for each representation we
construct zero-momentum meson correlation functions,

CX(x4, t) =
〈
X(x04)X

′(x04 + x4, t)
〉
, (3.8)
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where X = S (scalar) or P (pseudoscalar).11 The source
X is placed at euclidean time x04, while the sink X ′ is
separated by time x4 from the source. To shorten auto-
correlation times, we shift the source plane x04 between
successive lattice configurations of each ensemble. After
fixing to Coulomb gauge, we construct the source X us-
ing gaussian-smeared fermion fields with smearing radius
R0 = 6. We solve the Dirac equation using the conju-
gate gradient algorithm, and then flow the solution by
integrating the fermion flow equation following Ref. [41].
We use point sinks, projected to p⃗ = 0. As for the gauge
field, flowed correlation functions are recorded at interval
∆t = 0.1.
Having similarly computed the flowed two-point func-

tion of the vector current, we use Eq. (3.7) to determine
the mass anomalous dimension γm as a function of the
euclidean time separation x4 and the flow time t. Exam-
ples of raw results for γm are shown in Fig. 13 for both
representations. A new ingredient, clearly visible in the
figure, is the x4 plateaus. This provides a practical crite-
rion for satisfying the condition

√
8t≪ x4, and hence we

extract the anomalous dimensions using values of x4 in-
side the plateau, averaging over the range 11 ≤ x4 ≤ 14.
The rest of the calculation follows the same steps as

for the beta function. We interpolate the raw results to
obtain γm as a function of g2, and then use the interpo-
lations γm(t, g2) to take the continuum limit a2/t→ 0 at
fixed g2.

Final results for the mass anomalous dimensions are
shown in Fig. 3 above. In the weak-coupling region, the
mass anomalous dimensions agree with one-loop pertur-
bation theory,

γm =
6g2C2

16π2
, (3.9)

where C2 is the quadratic Casimir operator: C2 = 15/8
for the fundamental representation and C2 = 5/2 for the
sextet representation. At larger couplings, the calculated
mass anomalous dimensions move below the one-loop re-

sult. At the IR fixed point we have γ
(4)
m ≃ 0.75 for the

fundamental representation and γ
(6)
m ≃ 1.0 for the sex-

tet representation. Both are quite large, suggesting that
while the 4+4 system is IR conformal, it is not too far
from the conformal sill.

These results, like the beta function presented above,
are based on data obtained on lattices of size 243 × 48.
We have carried out comparisons to the two 283 × 56
ensembles, parallel to the analysis of β(g2) in Sec. II C. In
a plot along the lines of Fig. 7, we find of course the same
shift in g2, but, again, no change in the data beyond the
statistical error bars. Hence we expect γm(g2) to move
horizontally with the beta function as we approach the

11 We verified that the scalar and pseudoscalar correlators agree
within error, as expected when the chiral limit is taken in finite
volume.

infinite-volume limit, with no other change. We obtain
the same behavior for the chimera anomalous dimensions,
presented below.

B. Chimera anomalous dimensions

Many different chimera operators can be used to cre-
ate a top-partner state [46, 47]. We consider opera-
tors of the lowest possible mass dimension, which are
three-fermion operators with no derivatives. To write
them, we introduce Dirac fermions for the sextet repre-
sentation, χABi, i = 1, . . . , 4, where i is a flavor index
while A,B = 1, . . . , 4, are the hypercolor indices, which
are antisymmetrized. The fundamental representation
fermions are denoted ψAa, where a = 1, . . . , 4 is also a
flavor index. The three-fermion chimera operators are

BIJ
iab = ϵABCD PI χABi

(
ψT
Ca CPJ ψDb

)
, (3.10a)

BI
iabµ = ϵABCD PI γµχABi

(
ψT
CaCγµγ5ψDb

)
, (3.10b)

where the labels I, J take the values R,L. Here C is the
charge-conjugation matrix and PR,L = (1 ± γ5)/2. In
Eq. (3.10b) there is no summation over µ.
Projecting these operators onto the quantum numbers

of the top quark depends on the details of the embedding
of the Standard Model symmetries in the hypercolor (M6
or M11) model. For the M6 model, see Refs. [46, 47].
This will not concern us here.
We construct chimera two-point functions following

closely Ref. [23]. All the chimera correlators we consider
have the general form

C±(x4, t) = Tr
〈
B(x04 + x4, t) Λ̄(x

0
4)P±

〉
, (3.11)

where P± = 1
2 (1± γ4) are parity projectors. The source

operator Λ̄ is a quark-model creation operator for the top
partner, which is kept at t = 0 (for details, see Ref. [23]).
The sink operator B(x04+x4, t) is one of the operators in
Eq. (3.10). We use the same flowed fermion fields as for
the mesons. As before, the sink is projected onto zero
spatial momentum.
The correlation functions (3.11) are related by discrete

(lattice) symmetries. First, the BI
iabµ operators are re-

lated by hypercubic rotations; since we calculate cor-
relation functions with x4 dependence, we separate the
µ = 4 operator from µ = 1, 2, 3 and lump the latter into
a “space” component, viz.,

BsI
iab =

1

3

3∑
k=1

BI
iabk , (3.12a)

BtI
iab = BI

iab4 . (3.12b)

In addition, the correlation functions (3.11) are related
by the usual continuum discrete symmetries. Parity
flips the chiral projectors, and so it takes, for example,
BRR(p⃗ = 0, x4) ↔ BLL(p⃗ = 0, x4). Euclidean time re-
versal likewise flips the parity projectors, and transforms
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the time component according to x4 ↔ T − x4, where T
is the temporal extent of the lattice.12

The outcome is that there are only three independent
anomalous dimensions.13 We denote them γRR

ch for BRR

and BLL; γRL
ch for BRL and BLR; and γsch for BsI and

BtI .
Since each chimera operator consists of two fun-

damental and one sextet fermion, we normalize the
flowed chimera two-point functions by constructing ra-
tios [cf. Eq. (3.6)]

R±(x4, t) =
C±(x4, t)

C
(4)
V (x4, t)

√
C

(6)
V (x4, t)

. (3.13)

Here C
(4)
V (x4, t) and C

(6)
V (x4, t) are the two-point func-

tions of the fundamental and sextet vector currents. We
then use Eq. (3.7) as before to extract the anomalous
dimension.

Figure 14 shows our results for the three independent
anomalous dimensions γRR

ch , γRL
ch and γsch. The general

behavior of each of them closely resembles that of the
mass anomalous dimensions. At our weakest couplings,
the anomalous dimensions agree with one-loop perturba-
tion theory, whereas for larger couplings, the calculated
anomalous dimensions fall below the one-loop curve. In
addition, γRR

ch and γRL
ch agree within error, which is not

required by symmetry.
The one-loop predictions are given by γ = cg2/(16π2),

where c = 15/4 for both γRR
ch and γRL

ch , and c = 15/2
for γsch [48] (see also [49]). These anomalous dimensions
happen to satisfy

γRR
ch : γRL

ch : γsch : γ(4)m : γ(6)m = 1 : 1 : 2 : 3 : 4 . (3.14)

Thus, while at one loop γsch is twice γRR
ch or γRL

ch , it is
still smaller than both of the mass anomalous dimen-
sions. This pattern persists in our non-perturbative re-
sults. Indeed, the ratios (3.14) are roughly preserved
near the fixed point as well, where γRR

ch ≈ γRL
ch ≃ 0.25

and γsch ≃ 0.5.

IV. CONCLUSIONS

As reported in this paper, we have employed lattice
techniques to study the 4+4 model, an SU(4) gauge the-
ory with four Dirac fermions in the fundamental repre-
sentation and with eight Majorana fermions in the sex-
tet representation. We used the continuous RG method,

12 The product of euclidean time reversal and parity acts on a
generic fermion field as ψ(x) → γ5ψ(−x) in infinite volume. We
improve statistics by averaging over quartets of correlators re-
lated by parity and time reversal.

13 Naturally, the anomalous dimensions are independent of flavor
indices.

based on a gradient flow, to calculate the beta func-
tion and a number of important anomalous dimensions.
Our lattice action includes a set of Pauli–Villars fields,
which enable us to reach otherwise inaccessible strong
couplings. We find that the 4+4 model has an infrared-
stable fixed point at g2 ≃ 15.5.
We have dealt carefully with the continuum limit.

Moreover, we have argued that finite-volume effects on
both the beta function β(g2) and the anomalous dimen-
sions are limited to a common horizontal shift of a few
percent, which leaves the anomalous dimensions at the
infrared fixed point unchanged.
The M6 and M11 models of the Ferretti–Karateev list

[7, 10] can be reached from the 4+4 model by giving
large masses to a suitable subset of the fermions, while
the fermion fields needed for the Ferretti–Karateev model
itself are kept massless or given much smaller masses.
Assuming that the Ferretti–Karateev model is below the
conformal sill, it follows that the decoupling of the heavy
fermions will trigger chiral symmetry breaking and con-
finement. The hypercolor scale ΛHC thus follows the
heavy mass scale [16–19].
We also find that the mass anomalous dimensions of

both representations are quite large at the fixed point,

even reaching γ
(6)
m ≃ 1 for the sextet representation. The

anomalous dimensions of all top-partner chimera oper-
ators are smaller, reaching 0.5 or less. If one chooses
masses for the fermions of the 4+4 model, as just dis-
cussed, to reach the M6 or the M11 model, the anoma-
lous dimensions that govern the running of operators
from the EHC scale down to the HC scale will still be
controlled by the fixed point. The critical value of the
chimera anomalous dimension, where suppression by a
power of ΛHC/ΛEHC is eliminated, is γ = 2 (see for ex-
ample Ref. [6]). Our results, then, indicate that these
anomalous dimensions may not be large enough for a
phenomenologically successful composite Higgs model.
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Appendix: Lattice matters

1. Lattice action and simulation code

As in our previous work on the 2+2 model, we use a
Wilson-clover fermion action, with a gauge-invariant ki-
netic term for each fermion species. We use normalized
hypercubic (nHYP) smeared gauge links for the funda-
mental representation [50, 51]; gauge links for the sex-
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FIG. 14. Anomalous dimensions of chimera operators. Top left: γRR
ch . Top right: γRL

ch . Bottom: γs
ch (same plot as in Fig. 4).

tet representation are constructed from these smeared
links. The clover coefficient is set equal to unity for both
fermion species [52, 53]. The gauge field action has the
form βSplaq + γSNDS, where Splaq is the usual plaque-
tte action. SNDS is the nHYP dislocation suppressing
action, a smeared action designed to reduce gauge-field
roughness that would create large fermion forces in the
molecular dynamics evolution [54]. We hold the ratio
γ/β = 1/125 fixed [20].

As discussed in Sec. II, in this work we have added a
set of Pauli–Villars (PV) fields, which allow us to reach
much further into strong renormalized coupling [43]. The
PV action is the same Wilson-clover action as for the
fermions, but the PV fields have opposite statistics. The
ratio of PV to fermion fields is 3 : 1, that is, we have
12 PV fields in each representation. The bare mass of
the PV fields is kept at am0 = 1 (κ = 1/10) in order
that they decouple in the continuum limit. This can be
gauged by the mass of the ghost pion made out of two
PV fields, which we find to be roughly equal to 2 in lat-
tice units. This means that the effective gauge action
induced by integrating over the PV fields is essentially
local. For comparison, we note that the physical pions in

both representations come out to have masses dictated by
the volume, mπ ≃ π/L, where the lattice size is L = 24a
or 28a.
Our multi-representation code is a derivative of the

MILC code [55]. We use three nested update levels
with one Hasenbush preconditioning mass. The inner-
most level (level=0) contains the gauge update. Pseudo-
fermion actions are simulated at level=1, which takes
care of the upper end of the fermion spectrum, and at
level=2, the outermost level, which takes care of the
lower end of this spectrum. The PV fields are simulated
at level=1, as is SNDS.

2. Ensembles

For each value of the gauge coupling β, we determine
the critical point Kc = (κc4, κ

c
6) by tuning the fermion

masses to zero for both representations, as calculated
from the axial Ward identities (AWI). We require the
actual AWI masses to be |mq| <∼ 0.002, as we have seen
that these masses are small enough to have negligible ef-
fect on the flow. The ensembles used in this work are
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shown in Table 4. In practice, we tuned to Kc for each
of our 243 × 48 ensembles. In the 283 × 56 ensembles

we kept the same (κ4, κ6) as for the smaller volume and
verified that the AWI masses are practically unchanged.
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L/a β κ4 κ6 lattices mq4 mq6
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TABLE 4. Parameters and fermion masses for the ensembles. The volume is L3 ×T , with T = 2L. The fifth column gives the
number of configurations that were used in the flow analysis. We saved a configuration every 5 trajectories (after equilibration).
mq4 and mq6 are the AWI masses of the fundamental and sextet representations, respectively.
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