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LONGITUDINAL PLASMA WAVES
1

A plasma is a gas of electrons and ions. We assume the motion is non-relativistic; we ignore
collisions between electrons and ions; and we ignore motion of the ions because they are
heavy. If we are looking for longitudinal waves, E ‖ k, we start with

∇× E = 0, (1)

which immediately tells us that ∂B/∂t = 0. For simplicity we assume further that B = 0,
and show that this gives a consistent solution of Maxwell’s Equations.

We have Gauss’s Law,
∇ · E = 4πen(r), (2)

where n(r) is the density of electrons at r. If indeed B = 0, Ampère’s Law gives

0 = ∇× B =
4π

c
J +

1

c

∂E

∂t
. (3)

The current is J = env, where v(r) is the mean velocity of the electrons at r.
Now we make an assumption that the plasma is nearly uniform and nearly static. This

means that n(r) = n0 + δn(r), where δn is small, and thus ∇n is small; also v is small. We
work to first order in small quantities. Thus nv → n0v, giving the linearized current

J = en0v. (4)

Similarly, the continuity equation for J ,

∂n

∂t
+ ∇ · (nv) = 0 (5)

becomes
∂n

∂t
= −n0∇ · v. (6)

Finally, we have the equation of motion of the electrons,

m
dv

dt
= m

[

∂v

∂t
+ (v · ∇)v

]

= eE −
1

n
∇p. (7)

In Eq. (7) we used the “convective derivative,” which takes note of the fact that dv/dt refers
to a given electron, which moves during its acceleration. The term (v · ∇)v can, however,
be neglected since it is of second order in the small quantity v. The second term on the
right-hand side is the force due to the pressure of the electron gas. The gradient −∇p is a
force per unit volume; to convert it into a force per particle we divide by n.

Now we are set up to derive a wave equation. We differentiate Ampère’s Law (3) and use
Eq. (4) to derive

1

c

∂2
E

∂t2
= −

4π
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∂J

∂t

= −
4πen0

c

∂v

∂t
(8)

1 Following Jackson (1st ed.) Sec. 10.9.
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Using Eq. (7) (without the convective term),

1

c

∂2
E

∂t2
= −

4πen0

mc

[

eE −
1

n0

∇p
]

. (9)

The gradient of p is proportional to the gradient of n via a thermodynamic derivative,

∇p =

(

∂p

∂n

)

0

∇n, (10)

where the derivative is an adiabatic derivative evaluated at n = n0 (just as in the usual
derivation of sound waves). The density n is related to E via Gauss’s Law (2), so we have
the final result

∂2
E

∂t2
+

4πe2n0

m
E −

(∂p/∂n)0

m
∇(∇ · E) = 0. (11)

This is the wave equation.
We solve the wave equation as usual with a Fourier transform. In Fourier space, ∂/∂t →

−iω and ∇ → ik. Since E is longitudinal, it is parallel to k in Fourier space. Thus the
wave equation becomes

[

−ω2 + ω2

p
+

(∂p/∂n)0

m
k2

]

E(k, ω) = 0 , (12)

where ω2

p
= 4πe2n0/m is called the plasma frequency. This translates into the dispersion

relation,

ω2 = ω2

p
+

(∂p/∂n)0

m
k2 . (13)

Plasma waves cannot propagate with a frequency ω < ωp, since then k is imaginary. ωp is
the frequency of free oscillations of the plasma.
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