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MAGNETIC MOMENT OF A CURRENT LOOP

The Cartesian multipole expansion for the magnetic vector potential has the dipole term for
its first nontrivial term. Consider a current loop. The current I flows around a closed curve
C, defined by the vector function x(`) of the parameter ` along its length (see the notes on
charge and current density). Then the magnetic dipole moment is

µ =
I

2c

∮
C
x(`)× d`. (1)

We can turn this into an area integral as follows. Since x is just the location of each
loop element, we can regard it as the field r evaluated on the loop. r is of course defined
everywhere in space; another way of writing Eq. (1) is

µ =
I

2c

∮
C
r × d`. (2)

If we write this in terms of components, we have

µi =
I

2c

∮
C
εijk rj d`k. (3)

Now let’s keep i fixed, and define a new vector field F as

Fk = εijkrj, (4)

so that

µi =
I

2c

∮
C
F · d`. (5)

(Remember i is fixed, and it is hiding inside the definition of F .) Equation (5) is the
circulation of F around the loop; by Stokes’ Theorem it is equal to

µi =
I

2c

∫
S
(∇× F ) · dS, (6)

where S is any surface bounded by the closed curve C. Let’s evaluate ∇× F :

(∇× F )l = εlmn∂mεijnrj = εlmnεijnδjm

= εlmnεimn = 2δil, (7)

so

µi =
I

c

∫
S
dSi, (8)

which means

µ =
I

c

∫
S
dS =

I

c
An̂(S)n̂. (9)

Remember that C is not necessarily a planar curve, and also that S is any surface bounded
by C. In Eq. (9), then, n̂ is some mean of the normal vectors to the elements dS, and An̂(S)
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is the area of the projection of S onto a plane normal to n̂.1 We got here from Eq. (1),
which is just a line integral around the curve C, so we already know that the result (9) is
independent of our choice of the surface S!

If we make C a planar curve, then it is clear that

µ =
I

c
A(S)n̂. (10)

Here S can be chosen to be the planar surface enclosed by C; then A(S) is just the area of
this surface and n̂ is the normal to the plane.

1 If you’re confused by this, do the exercise of evaluating
∫
S dS on a hemisphere.
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