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LONGITUDINAL AND TRANSVERSE FIELDS

Problem: Given a vector function F (r), find two vector functions FL(r) and FT (r) such
that

F = FL + FT (1)

∇ · FT = 0 (2)

∇× FL = 0. (3)

We assume the fields go to zero at infinity fast enough for whatever we will say here.
First question: Is there a unique answer? After all, given a solution FL,FT we can find

another solution F ′L,F
′
T by writing, for any function Λ(r),

F ′L = FL +∇Λ (4)

F ′T = FT −∇Λ. (5)

Then ∇× F ′L is still zero, and ∇ · F ′T will be zero if we demand ∇2Λ = 0. But this means
that Λ(r) must satisfy Laplace’s equation. If all fields go to zero at infinity, then Λ must go
to a constant at infinity. When we solve Laplace’s equation with this boundary condition
the only solution is Λ = constant, which means that FL,FT are unique.

To solve the problem: We assume that any FL satisfying Eq. (3) can be written as a
gradient,

FL = −∇φ. (6)

Then, since ∇ · FT = 0,
∇ · F = ∇ · FL = −∇2φ. (7)

But this is just Poisson’s equation for φ, with the solution

φ(r) =
1

4π

∫
d3r′
∇′ · F (r′)

|r − r′|
, (8)

so

FL(r) = −∇
[

1

4π

∫
d3r′
∇′ · F (r′)

|r − r′|

]
(9)

To find FT , we suppose that it can be written as a curl,

FT = ∇×A. (10)

There is a gauge freedom here, A → A +∇Λ; we use it to impose a condition on A, that
∇ ·A = 0. Since ∇× FL = 0,

∇× F = ∇× FT = ∇×∇×A = −∇2A. (11)

This is again Poisson’s equation, with the solution

A(r) =
1

4π

∫
d3r′
∇′ × F (r′)

|r − r′|
. (12)
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Thus

FT (r) = ∇×
[

1

4π

∫
d3r′
∇′ × F (r′)

|r − r′|

]
(13)

The various assumptions made along the way are justified by verifying that our solution
indeed satisfied Eqs. (1)–(3); uniqueness does the rest. Note:

• FL is a gradient, and is determined by ∇ · F .

• FT is a curl, and is determined by ∇× F .

• If ∇ · F = 0 then F = FT , which is a curl.

• If ∇× F = 0, then F = FL, which is a gradient.

We can solve the problem another way, more directly, using Fourier integrals. We write
F as a Fourier integral,

F (r) =
1

(2π)3/2

∫
d3k f(k) eik·r, (14)

and the same for FL,FT in terms of fL,fT . Clearly f(k) = fL(k) + fT (k).
The divergence and curl of FT,L are

∇ · FT (r) =
1

(2π)3/2

∫
d3k (ik · fT (k)) eik·r (15)

∇× FL(r) =
1

(2π)3/2

∫
d3k (ik × fL(k)) eik·r. (16)

This shows that if we demand, for all k, that

k · fT (k) = 0 (17)

k × fL(k) = 0, (18)

then we will have the solution. These equations mean that, for each value of k, we have to
break up the vector f(k) into components parallel and perpendicular to k.

Equation (18) means that fL(k) is parallel to k. The solution is

fL(k) =
(k · f)

k2
k, (19)

or, in components,

fLi =
kikj
k2

fj. (20)

fT (k), on the other hand, is perpendicular to k. The solution is

fT (k) = −k × (k × f)

k2
(21)

= f − (k · f)

k2
k. (22)

In components,

fTi =

(
δij −

kikj
k2

)
fj. (23)
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The forms (19) and (21) will be most useful to us. Both are ambiguous as k → 0. We
can remove this ambiguity if we replace k2 by k2 + iε in the denominators; then

lim
k→0

fL,T (k) = 0, (24)

which is appropriate since fL,T (k = 0) governs the constant component of FL,T (r). This is
zero by assumption [FL,T (∞)→ 0].

Now we return to r space. Transforming back, we have

FL(r) =
1

(2π)3/2

∫
d3k k

1

k2 + iε
k · f(k) eik·r (25)

= (−i∇)(−i∇·)G(r), (26)

where we define

G(r) =
1

(2π)3/2

∫
d3k

1

k2 + iε
f(k) eik·r. (27)

What is G(r)? It is easy to see that

∇2G =
1

(2π)3/2

∫
d3k

−k2

k2 + iε
f(k) eik·r (28)

= −F (r). (29)

This is Poisson’s equation; in view of the boundary conditions, the solution is

G(r) =
1

4π

∫
d3r′

F (r′)

|r − r′|
. (30)

Our result is

FL(r) = −∇
[

1

4π

∫
d3r′∇ · F (r′)

|r − r′|

]
, (31)

= −∇
[

1

4π

∫
d3r′ F (r′) · ∇ 1

|r − r′|

]
. (32)

We can show that this is the same as our earlier result. Note that

∇ 1

|r − r′|
= −∇′ 1

|r − r′|
, (33)

where ∇′ means the gradient with respect to r′. We insert this into Eq. (32) and integrate
by parts, which means we use

F (r′) · ∇′ 1

|r − r′|
= ∇′ ·

(
F (r′)

1

|r − r′|

)
− (∇′ · F (r′))

1

|r − r′|
. (34)

When Eq. (34) is integrated over the volume, the first term on the RHS turns into a surface
integral at infinity,∫

d3r′∇′ ·
(
F (r′)

1

|r − r′|

)
=
∫ ∫

dS · F (r′)
1

|r − r′|
→ 0. (35)
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We arrive at the result

FL(r) = −∇
[

1

4π

∫
d3r′
∇′ · F (r′)

|r − r′|

]
, QED. (36)

For the transverse component we have similarly

FT (r) = ∇×
[

1

4π

∫
d3r′∇× F (r′)

|r − r′|

]
(37)

= ∇×
[

1

4π

∫
d3r′

(
∇ 1

|r − r′|

)
× F (r′)

]
, (38)

which we can transform by similar steps to

FT (r) = ∇×
[

1

4π

∫
d3r′
∇′ × F (r′)

|r − r′|

]
, (39)

as above.
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