simulations

running coupling

anomalous dimension

spectrum 00000000 remarks

The running coupling in systems with 8 and 4+8 flavor and its implication for the spectrum

Oliver Witzel Higgs Centre for Theoretical Physics

Tel Aviv, June 26, 2015

simulations

running coupling

anomalous dimension

spectrum 00000000 remarks 00

motivation

notivation	simulations	running coupling	anomalous dimension	spectrum	remarks
00000	00000	000000	00	0000000	00

8 and 4+8 flavors

- ▶ Two projects based on the same action
 - SU(3) gauge group
 - Fundamental adjoint gauge action with $\beta_a = -\beta/4$ [Cheng et al. 2013][Cheng et al. 2014]
 - ▶ nHYP smeared staggered Fermions [Hasenfratz et al. 2007]
 - ▶ Most simulations/measurements performed with FUEL [J. Osborn]
- Common goals
 - ▶ Explore near conformal or conformal dynamics
 - ▶ Compute the iso-singlet 0⁺⁺
- Collaborators

4+8 flavor

Richard Brower, Claudio Rebbi Anna Hasenfratz, Evan Weinberg, OW

[JETP 120 (2015) 3, 423] [PoS Lattice2014 254] [CCP proceedings 2014]

simulations

running coupling

anomalous dimension

spectrum 00000000 remarks 00

motivation	simulations	running coupling	anomalous dimension	spectrum	remarks
00000	00000	000000	00	0000000	00

Motivation

SU(3) gauge theories with N_f fundamental fermions

► Staggered fermions come in multiplicities of 4 (no rooting) ⇒ 4, 8, 12, 16 are preferred N_f

motivation	simulations
000000	00000

running coupling

anomalous dimension

spectrum 00000000 remarks 00

Theories with $N_{\ell} = 4$ and $N_{h} = 8$ flavors

simulations

running coupling

anomalous dimension

spectrum 00000000 remarks 00

8 flavor vs. 4+8 flavors

8 flavors

- Most promising candidate for near conformal dynamics with SU(3) and integer number of fermions
- Interesting and important observations by LatKMI [Y. Aoki et al. 2014]
- Large scale resources required to explore chiral limit

4+8 flavors

- General model to study near conformal behavior
- ► Heavy quark mass m_h is additional free, continuous parameter
- Sufficiently well known limits
 - $m_h
 ightarrow \infty$: 4-flavors
 - $m_h
 ightarrow m_\ell$: 12-flavors
- ▶ Has a continuum limit
- \Rightarrow Something interesting must happen
- ⇒ We can tune to be near the conformal window

motivation	simulations	running coupling	anomalous dimension	spectrum	remarks
000000	00000	000000	00	0000000	00

Continuum limit in 4+8 flavors

- We have 3 parameters: β , m_{ℓ} , and m_h
- \blacktriangleright First we take the chiral limit, i.e. $m_\ell \rightarrow 0$ and only 2 parameters remain
- ▶ Now we take the continuum limit by sending *together* $\beta \rightarrow \infty$ and $m_h \rightarrow 0$

Practically this may be difficult and will require tuning

simulations

running coupling

anomalous dimension

spectrum 00000000 remarks 00

simulations

motivation	
000000	

simulations •0000 running coupling

anomalous dimension

spectrum 00000000 remarks

Performed simulations

 8 flavor simulations at β = 4.8 focus on chiral masses and are very expensive

 4+8 simulations show many cheap ensembles on 24³ × 48 lattice
 Symbols indicate volumes and colors finite volume effects

simulations ○●○○○ running coupling

anomalous dimension

spectrum 00000000 remarks

Lattice scales: 8 flavor

simulations 00000 running coupling

anomalous dimension

spectrum 00000000 remarks

Lattice scales

motivation	
000000	

simulations 000●0 running coupling

anomalous dimension

spectrum 00000000 remarks 00

Lattice scales

simulations 0000● running coupling

anomalous dimension

spectrum 00000000 remarks

Out of curiosity: the average plaquette

simulations

running coupling

anomalous dimension

spectrum 00000000 remarks 00

running coupling

 g^2

simulations 00000 running coupling

anomalous dimension

▶ 12 flavors:

spectrum 00000000 remarks

Running coupling in 4+8

4 flavors:
 QCD-like fast runnin

simulations 00000 running coupling

anomalous dimension

spectrum 00000000 remarks 00

Running coupling form gradient flow

► Gradient flow defines the renormalized coupling [Narayanan and Neuberger 2006] [Lüscher 2010]

 $g^2_{GF}(\mu=1/\sqrt{8t})=t^2\langle E(t)
angle/\mathcal{N}$

t: flow time; E(t) energy density

• g_{GF}^2 is used for scale setting

$$g_{GF}^2(t = t_0) = 0.3/\mathcal{N}$$
 ("t₀-scale")

Can determine renormalized running coupling on large enough volumes and large enough flow times in the continuum limit

	naious uniension spectrum remarks
000000 00000 00000 000	00000000 00

Running coupling form gradient flow: 4+8 flavors

simulations 00000 running coupling

anomalous dimension

spectrum 00000000 remarks

Running coupling form gradient flow: 8 flavors

motivation 000000	simi 00	ulations 000	running coupling 00000●	anomalous dimen	ision	spectrum 00000000	remarks 00
_			-				

Running coupling form gradient flow: 8 flavors

simulations

running coupling

anomalous dimension

spectrum 00000000 remarks 00

anomalous dimension

motivation	simulations	running coupling	anomalous dimension	spectrum	remarks
000000	00000	000000	•0	00000000	00

Anomalous dimension

▶ We can predict a scale dependent anomalous dimension $\gamma_{\text{eff}}(\mu)$ form the mode number of the Dirac operator

 $\mu(\lambda) \propto \lambda^{4/(\gamma_{
m eff}(\lambda)+1)}$ with $\lambda \propto \mu$

→ For large $\mu \sim \lambda$: $\gamma_{\text{eff}}(\mu)$ matches perturbative value → At $\lambda = 0$: $\gamma_{\text{eff}}(\mu)$ matches universal IRFP, if the system is conformal;

meaningless once chiral symmetry breaks

Scale dependent anomalous dimension $\gamma_{\rm eff}(\mu)$

- ► Anomalous dimension is not large but still O(1) and can persist
- For $m_h \rightarrow 0$ it approaches the value corresponding to the 12 flavor IRFP $\gamma_{\rm IRFP}^{12f} = 0.235(15)$

- ▶ Anomalous dimension is around 0.9 for $\beta = 4.8$
- ▶ [Cheng et al. in preparation]

simulations

running coupling

anomalous dimension

spectrum

remarks 00

spectrum

motivation	
000000	

simulations

running coupling

anomalous dimension

spectrum remarks •0000000 00

Connected spectrum

▶ Rescaling m_ℓ , m_q , M_π and M_ρ by $\sqrt{8t_0}$

- For 4+8 flavors we observe a weak dependence on m_h
- ▶ Fit lines intended "to guide the eye" assuming the naive expectation

simulations

running coupling

anomalous dimension

spectrum 0000000 remarks

Are we chirally broken?

- LatKMI data [Y. Aoki et al. 2014], USBSM data [Schaich, PoS Lattice2013 072]
- ▶ In 4 flavors (QCD) we know the ratio diverges
- ▶ In 12 flavors an almost constant ratio is observed [Cheng at al. 2014]

— as expected for conformal systems

simulations

running coupling

anomalous dimension

spectrum 00000000 remarks

Are we chirally broken?

simulations 00000 running coupling

remarks

Disconnected spectrum: the 0^{++} scalar

Both projects use the same setup

▶ 6 U(1) sources with dilution on each time slice, color and even/odd spatially

 \blacktriangleright Variance reduced $\langle \overline{\psi}\psi\rangle$

and the same analysis strategy

- Correlated fit to both parity states (staggered)
- ► Vacuum subtraction introduces very large uncertainties
- Advantageous to fit additional constant

$$C(t) = c_{0^{++}} \cosh\left(M_{0^{++}}\left(rac{N_{ au}}{2} - t
ight)
ight) + c_{\pi_{
m sc}}(-1)^t \cosh\left(M_{\pi_{
m sc}}\left(rac{N_{ au}}{2} - t
ight)
ight) +
u$$

• Equivalent to fitting the finite difference: C(t+1) - C(t)

motivation 000000

simulations 00000 running coupling

anomalous dimension

spectrum 000000000 remarks

Comparison of $D_{\ell\ell}$ and $D_{\ell\ell} - C_{\ell\ell}$

 F_{π} , M_{π} , $M_{
ho}$, and $M_{0^{++}}$ for $m_h=0.060$ and $m_h=0.080$

F_{π} , M_{π} , M_{ρ} , M_{nucleon} and $M_{0^{++}}$ for 8 flavors

 $\blacktriangleright m_{\ell} = 0.00222: F_{\pi}L = 0.027 \cdot 48 = 1.3$

Connected spectrum not too happy with "naive assumptions for fit"

motivation	simulations	running coupling	anomalous dimension	spectrum	remarks
000000	00000	000000	00	0000000	00

Pion taste splitting

- ► Taste splitting is artifact of staggered fermions
- ▶ In QCD modern, smeared staggered actions show small taste splitting effects
- Taste splitting is typically constant w.r.t. m_q

▶ In 4+8 splitting increases for larger m_ℓ when reducing m_h

simulations

running coupling

anomalous dimension

spectrum 00000000 remarks

remarks

simulations

running coupling

anomalous dimension

spectrum

remarks

Concluding remarks

4+8 flavors

- ► A great model to explore near conformal dynamics by varying the continuous parameter m_h
- Limiting cases of 4 and 12 flavors help to understand what is happening

8 flavors

- ► A very difficult system requiring very expensive simulations to investigate
- May be very close to the onset of the conformal window

Non-QCD like features

- Running coupling develops a "shoulder" > Regime of slower running coupling
- \blacktriangleright Chiral behavior can be tuned with m_h \blacktriangleright Chiral behavior only visible for very
- - small bare fermion masses
 - \blacktriangleright Curvature of M_o
 - Non-constant taste splitting
 - ▶ The 0⁺⁺ is light: $M_{0^{++}} < M_o, 2M_{\pi}$

