Strongly Interacting Gauge Theory and Physics Beyond Standard Model Mass Anomalous Dimension γ

Kohtaroh Miura (CPT, Aix-Marseille Univ. (KMI, Nagoya Univ.))

Tel Aviv, June. 25, 2015

8-flavor QCD with regards to WTC (LatKMI, Preliminary) SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary) Summary and Future Perspective

Motivation

- The Higgs boson with $M_{
 m H}\simeq 125$ GeV is discovered (2012, LHC-CERN)!
- The LHC second-run has started!

Why Not Investigate The Origin of EWSB?

8-flavor QCD with regards to WTC (LatKMI, Preliminary) SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary) Summary and Future Perspective

Strong Dynamics: Origin of EWSB

Questions/Answers: New Strong Dynamics

- Physical Contents of Higgs? Composite Higgs(c.f. σ, Cooper-Pair).
- Physics of Electroweak (EW) Symmetry Breaking? Chiral Symmetry Breaking.
- Fine-Tuning Problem for $M_{\rm H} = 125$ GeV? Log (partly Power-Low) corrections for $M_{\rm H} = 125$ GeV.

8-flavor QCD with regards to WTC (LatKMI, Preliminary) SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary) Summary and Future Perspective

Many Flavor QCD and Walking

- Beta function of N_f flavor in SU($N_c = 3$) gauge theory: $\beta(g) = dg(\mu)/d\mu = -b_0(N_f, N_c)g^3 - b_1(N_f, N_c)g^5 + \cdots$
- In 8 ≤ N_f ≤ 12, Walking Dynamics (Schwinger Dyson Analyses, Yamawaki et.al.('86), Holdom ('85)).
- Stable (light) Higgs: Techni-Dilaton (PNGB for Scale Sym Breaking).
- SM-lepton/quark masses: Enhancement by Factor $(\Lambda_{\rm ETC}/\Lambda_{\rm EW})^{\gamma}$

8-flavor QCD with regards to WTC (LatKMI, Preliminary) SD Studies on γ with UV/IR Cuts (Miura-Nagai Shibata, Preliminary) Summary and Future Perspective

Subject: Mass Anomalous Dimension

We investigate the mass anomalous dimension γ in many flavor QCD by using

- Lattice Gauge Theory with Monte Carlo Simulations (Latest 8-Flavor Results in LatKMI Collaboration).
- Schwinger-Dyson (SD) Equations (Miura-Nagai-Shibata, UV/IR Cutoff Effects).

8-flavor QCD with regards to WTC (LatKMI, Preliminary) SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary) Summary and Future Perspective

Table of Contents

Introduction

8-flavor QCD with regards to WTC (LatKMI, Preliminary)

- Setups
- Hightlight
- Scaling Property of Mass Spectrum

${f SD}$ SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary)

- Some Introduction
- IR Cutoff Effects

Summary and Future Perspective

Setups Hightlight Scaling Property of Mass Spectrum

LatKMI Collaboration

- Y. Aoki (KMI, Nagoya Univ)
- T. Aoyama (KMI, Nagoya Univ)
- E. Bennett (Swansea Univ (UK))
- M. Kurachi (KEK)
- T. Maskawa (KMI, Nagoya Univ)
- K. Miura (CPT, Aix-Marseille Univ (RF) / KMI, Nagoya-Univ)
- K-i. Nagai (KMI, Nagoya Univ)
- H. Ohki (RIKEN)
- T. Yamazaki (Tsukuba Univ)
- K. Yamawaki (KMI, Nagoya Univ)
- E. Rinaldi (LLNL (US))
- A. Shibata (KEK)

8-flavor QCD with regards to WTC (LatKMI, Preliminary)

SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary) Summary and Future Perspective

Setups I

Setups Hightlight Scaling Property of Mass Spectrum

Lattice Action:	$N_f = 8$ HISQ Action
	+ Tree-level Symanzik Gauge Action with $\beta = 3.8$.
Argolithm:	HMC with Hasenbush pre-conditioning.
Observables:	$F_{\pi}, M_{\pi}, M_{\rho}, M_{a1}, M_N, VPF, \cdots$
Code etc:	MILC ver.7.6.3 with some modifications, SciDac Libraly.
Computer:	KMI HPC Cluster φ ,
	Nagoya-Univ-ITC CX400,
	Kyushu-Univ-RIIT CX400/HA8000.

Setups Hightlight Scaling Property of Mass Spectrum

Setups II

★: New Configs. ★: Updates, $\mathcal{O}(10^4)$ Configs.

$m_f \setminus L$	42	36	30	24	18	12
0.012	*					
0.015	*	*				
0.02		*	*	\star		
0.03		*	*	*		
0.04			*	*	*	
0.05			\star	\star	\star	\star
0.06			\star	*	*	
0.07			★	\star	\star	\star
0.08				*	*	\star
0.09						\star
0.10				\star	★	\star
0.12						\star
0.14						\star
0.16						\star

Introduction 8-flavor QCD with regards to WTC (LatKMI, Preliminary) SD Studies on γ with UV/IR Cuts (Miura-Nazai-Shibata, Preliminary)

Summary and Future Perspective

Setups Hightlight Scaling Property of Mass Spectrum

 $N_f = 8$ Flavor Singlet Scalar σ I (Update from LatKMI PRD 2014)

Light $\sigma \sim$ Dilaton (PNGB for Broken Scale Symm.)

8-flavor QCD with regards to WTC (LatKMI, Preliminary)

SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary) Summary and Future Perspective

Setups Hightlight Scaling Property of Mass Spectrum

$N_f = 8$ Flavor Singlet Scalar σ II (Update from LatKMI PRD 2014)

Light $\sigma \sim SM$ Higgs (125 GeV)? (c.f. LatHC Collab. ('14), Hietanen et.al. ('14), Athenodorou et.al. ('15)),

8-flavor QCD with regards to WTC (LatKMI, Preliminary)

SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary) Summary and Future Perspective

Setups Hightlight Scaling Property of Mass Spectrum

$N_f = 8$ S-Parameter

• The result $S \sim 0.25 - 0.275$ is smaller than that $S_{\rm QCD,N_f=2} \sim 0.43$.

- Walking ~ Weaker Chiral SSB ~ V-A Doubling (c.f. LSD-Collab. ('14), Knecht et.al. (Large N_c '98)).
- Still much larger than $S_{exp} = 0.03(10)$.

Introduction 8-flavor QCD with regards to WTC (LatKMI, Preliminary)

SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary) Summary and Future Perspective Setups Hightlight Scaling Property of Mass Spectrum

FSHS: Individual Fits

	F_{π}	M_{π}	$M_ ho$	$M_{ m N}$
γ	1.003(5)	0.627(2)	0.896(11)	0.810(11)
χ^2/dof	2.34	15.26	1.41	2.58

8-flavor QCD with regards to WTC (LatKMI, Preliminary)

SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary) Summary and Future Perspective

Setups Hightlight Scaling Property of Mass Spectrum

FSHS: Simultaneous Fits

 $(\gamma, \chi^2/\text{dof}) = (0.709(2), 124.96).$

Setups Hightlight Scaling Property of Mass Spectrum

FSHS: Simultaneous Fits with Mass Collection

 $(\gamma, \chi^2/dof) = (0.893(15), 3.26)$ for $\alpha = 1$.

Setups Hightlight Scaling Property of Mass Spectrum

FSHS: Simultaneous Fits with A-Hasenfratz Type Collection

Fit Ansatz: Cheng-Hasenfratz-Liu ('14).

 $(\gamma, \chi^2/dof) = (1.014(35), 2.46)$ for $\omega = 0.35$.

Setups Hightlight Scaling Property of Mass Spectrum

FSHS: Simultaneous Fits with Frascati-Groningen Type Collection

Fit Ansatz: Lombardo-Miura-Silva-Pallante ('14).

 $(\gamma, \chi^2/\text{dof}) = (0.617(2), 12.80)$ for k = 0.1.

8-flavor QCD with regards to WTC (LatKMI, Preliminary)

SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary) Summary and Future Perspective

Setups Hightlight Scaling Property of Mass Spectrum

$N_f = 8$ String Tension

$$\sqrt{\text{string}} \cdot a = C(m_f a)^{1/(1+\gamma)},$$

 $(\gamma, \chi^2/\text{dof}) = (0.97(4), 0.68).$

8-flavor QCD with regards to WTC (LatKMI, Preliminary)

SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary) Summary and Future Perspective

Setups Hightlight Scaling Property of Mass Spectrum

Summary on $N_f = 8$ QCD

FSHS Individual	F_{π}	M_{π}	$M_{ ho}$	M _N
γ	1.003(5)	0.627(2)	0.896(11)	0.810(11)
χ^2/dof	2.34	15.26	1.41	2.58

FSHS Simultaneous	γ	χ^2/dof
$LM_{h} = c_{0} + c_{1}X$, $X = Lm_{f}^{1/(1+\gamma)}$	0.709(2)	124.96
$LM_h = c_0 + c_1 X + c_2 Lm_f^{\alpha = 1}$	0.893(15)	3.26
$LM_h = c_0 + c_1 X + c_2 Lm_f^{\alpha=2}$	0.772(5)	19.38
$LM_h = (1 + c_2 m_f^{\omega = 0.35})(c_0 + c_1 X)$	1.014(35)	2.46
$LM_h = c_0 + c_1 X + c_2 L \exp(-kX) _{k=0.1}$	0.617(2)	12.80

- For m_f ∈ [0.012, 0.03], the quadratic fit (motivated by ChPT) works for all measured operators. However, N_f(M_π/(4πF/√2))² ≥ 6 and FL ≤ 0.85.
- For the same m_f range, the naive hyper-scaling fit also works except few cases with somewhat larger χ^2/dof . The γ is operator dependent.

 $N_{\rm f}=$ 8 QCD: Having Light σ , Showing Quasi-Conformal Nature with $\gamma\sim 1.$

Motivation: Lattice Results on γ in Color $SU(N_c = 3)$ with $N_f = 12$

[FG] Nunes et.al. ('14), [0] Deuzemann et.al. ('09), [1] LSD-Collab ('11), (using data provided in [7]), [2] DeGrand ('11), (using data provided in [7]), [3] LatKMI ('12), [4] Cheng et.al. ('13), [5] Itou ('13), [6] Shrock ('13) [7] Fodor et.al. ('11).

Some Introduction IR Cutoff Effects

SD with Too-Loop Improved Ladder Approx.

- $N_f \ge 8.05$: Banks-Zaks (BZ) Infra-Red Fixed Point (IRFP, α_*).
- $N_f \gtrsim 12$: Conformal Window with $\alpha_* \leq \alpha_{cr} = \pi/(3C_2[F])$.

 $\begin{array}{l} \mbox{Introduction} \\ \mbox{8-flavor QCD with regards to WTC (LatKMI, Preliminary)} \\ \mbox{SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary)} \\ \mbox{Summary and Future Perspective} \end{array}$

Some Introduction IR Cutoff Effects

SD with $\Lambda_{\rm UV/IR}$

$$\begin{split} iS_{\rm F}^{-1}(q) &= \left[A(p^2)\not p - \Sigma(p^2)\right] (\mbox{Fermion Invers-Prop.}) \ , \\ m_p(m_0,\Lambda_{\rm UV/IR}) &= \Sigma(p^2 = m_p;m_0,\Lambda_{\rm UV/IR}) \ , (\mbox{Pole Mass, SD-Output}) \ , \\ f_{\pi}^2(m_0,\Lambda_{\rm UV/IR}) &= \frac{N_c}{4\pi^2}\int dz \ z \ \frac{\left(1 - \frac{1}{4}z\frac{d}{dz}\right)\Sigma^2(z)}{\left(z + \Sigma^2(z)\right)^2} \ , (\mbox{PageIs-Stoker}) \ . \end{split}$$

State of The Arts (c.f. Previous Work (LatKMI '09))

- The full momentum dependence of the two-loop running coupling g ($\Lambda_{\rm UV/IR}$ vs scales encoded in g).
- Wide range probe in the parameter space $(\Lambda_{\rm IR}/\Lambda \in [10^{-8}, 2.5] \text{ and } \Lambda_{\rm UV}/\Lambda \in [1.0, 20] \text{ including } f_{\pi}/\Lambda_{\rm IR} \sim f_{\pi}L \sim 1).$

 $\begin{array}{l} \mbox{Introduction}\\ \mbox{8-flavor QCD with regards to WTC (LatKMI, Preliminary)}\\ \mbox{SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary)}\\ \mbox{Summary and Future Perspective} \end{array}$

Some Introduction

$N_{f}=12~f_{\pi}$ vs m_{0}

$$M_h = C m_0^{1/(1+\gamma_m)}$$
, $M_h = m_\rho$ or f_π . (1)

 $\begin{array}{c} \mbox{Introduction} \\ \$-\mbox{flavor}\ QCD \ with \ regards \ to \ WTC \ (LatKM) \ Preliminary) \\ {\rm SD \ Studies \ on \ } \gamma \ with \ UV/IR \ Cuts \ (Miura-Nagai-Shibata, \ Preliminary) \\ Summary \ and \ Future \ Perspective \\ \end{array}$

Some Introduction IR Cutoff Effects

 $N_{f} = 12 \ \gamma_{m} \ vs \ \Lambda_{IR}$

$$M_h = C m_0^{1/(1+\gamma_m)}$$
, $M_h = m_p$ or f_π . (2)

Some Introduction

SD-Based FSHS: Formulation

$$\frac{m_{0}}{Z_{\rm UV}m_{p}} = \frac{A_{\omega_{m}}(y_{\rm IR})D_{\omega_{m}}(y_{\Lambda})\left(\frac{1+y_{\rm IR}}{1+y_{\Lambda}}\right)^{(1-\omega_{m})/2} + (\omega_{m}\leftrightarrow-\omega_{m})}{A_{\omega_{m}}(y_{\rm IR})N_{\omega_{m}}(\max\{1,y_{\rm IR}\})\left(\frac{1+y_{\rm IR}}{1+y_{\Lambda}}\right)^{(1-\omega_{m})/2} + (\omega_{m}\leftrightarrow-\omega_{m})}, ,
A_{\omega_{m}}(y) = \frac{1+\omega_{m}}{2\omega_{m}}F\left[\frac{-1+\omega_{m}}{2},\frac{-1+\omega_{m}}{2},1+\omega_{m};\frac{1}{1+y}\right],
D_{\omega_{m}}(y) = \frac{1+\omega_{m}}{2}F\left[\frac{1-\omega_{m}}{2},\frac{1-\omega_{m}}{2},1-\omega_{m};\frac{1}{1+y}\right],
N_{\omega_{m}}(y) = F\left[\frac{1-\omega_{m}}{2},\frac{3-\omega_{m}}{2},1-\omega_{m};\frac{1}{1+y}\right],$$
(3)

$$\omega_{m} = 1-\gamma_{m}, \quad (y_{\rm IR},y_{\Lambda}) = \left(\frac{\Lambda_{\rm IR}^{2}}{m_{p}^{2}},\frac{\Lambda^{2}}{m_{p}^{2}}\right).$$
(4)

$$\frac{\hat{m}_{p}}{\hat{\Lambda}_{\rm IR}} = \begin{cases} C_{\rm X}(\gamma_{m},Z_{m}^{\rm UV})\cdot X, \quad X \equiv \hat{m}_{0}^{1/(1+\gamma_{m})}/\hat{\Lambda}_{\rm IR} \quad (\Lambda_{\rm IR}\ll m_{p}\ll\Lambda), \\ C_{\rm Y}(\gamma_{m},Z_{m}^{\rm UV})\cdot Y, \quad Y \equiv \hat{m}_{0}/\hat{\Lambda}_{\rm IR}^{-(1+\gamma_{m})} \quad (m_{p}\ll\Lambda_{\rm IR}\ll\Lambda). \end{cases}$$

8-flavor QCD with regards to WTC (LatKMI, Preliminary) SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary) Summary and Future Perspective Some Introductio IR Cutoff Effects

$N_f = 12$ SD-Based FSHS I

Some Introduction

8-flavor QCD with regards to WTC (LatKMI, Preliminary) SD Studies on γ with UV/IR Cuts (Miura-Nagai-Shibata, Preliminary) Summary and Future Perspective

$N_f = 12$ SD-Based FSHS II

$$\frac{\hat{m}_{p}}{\hat{\Lambda}_{\mathrm{IR}}} = \begin{cases} C_{\mathrm{X}}(\gamma_{m}, Z_{m}^{\mathrm{UV}}) \cdot X , & X \equiv \hat{m}_{0}^{1/(1+\gamma_{m})} / \hat{\Lambda}_{\mathrm{IR}} & (\Lambda_{\mathrm{IR}} \ll m_{p} \ll \Lambda) , \\ C_{\mathrm{Y}}(\gamma_{m}, Z_{m}^{\mathrm{UV}}) \cdot Y , & Y \equiv \hat{m}_{0} / \hat{\Lambda}_{\mathrm{IR}}^{-(1+\gamma_{m})} & (m_{p} \ll \Lambda_{\mathrm{IR}} \ll \Lambda) . \end{cases}$$
(6)

c.f. $f_{\pi}L$ in recent lattice results: [1] Fodor et.al. ('11), [2] Cheng et.al. ('14), [3] DeGrand ('11).

Summary

8-flavor QCD (LatKMI)

- $\bullet\,$ Having Light $\sigma,$ Showing Quasi-Conformal Nature with $\gamma\sim 1.$
- A viable candidate of Walking Technicolor Model (One-Family Model).

SD with $\Lambda_{\rm UV/IR}$ (Miura-Nagai-Shibata)

- The γ is strongly suppressed when the IR cutoff Λ_{IR} gets comparable to the scale (m_p, f_π) .
- The SD-based FSHS allows us to avoid the suppression, explains how two slopes in FSHS result from the IR cutoffs.
- The fomulas applicable for lattice mass spectra are desirable.

LABEX-OCEVU Project in CPT Aix-Marseille Univ: Muon (g-2)

There exists 3.3 σ deviation between a_{μ}^{exp} and a_{μ}^{SM} .